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The rise of malicious code
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The rise of malicious code

Today malware is a very
lucrative activity

Who lasts longer earns the most . . .
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Long lasting malware

Spread/replicate fast

Hide the presence on the system

Obfuscate the code (e.g., encryption,
polymorphism, metamorphism)

Traditional signature-based approaches
are not effective anymore!
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Current trend for malware analysis and detection

Static analysis is either too onerous or impossible
(malware is obfuscated & self-modifying)

Dynamic, behavior-based malware analysis

Run the suspicious program
and monitor its execution

Does it behave maliciously?
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Limitations of dynamic approaches

Incompleteness

The analysis involves a limited number of
program paths

may behave maliciously only in very

specific circumstances

Non-transparency

The analysis tool can be detected

If detects the analyzer, it behaves like
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Limitations of dynamic approaches

How to perform post-infection analysis?

If the host has already been compromised,

could tamper with the execution of the

analysis tool

High run-time overhead

End hosts have strict real-time constraints

If the analysis takes too much, the detector

assumes a suspicious program is
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Research goal

Next-generation malware is a new category
of highly-sophisticated malicious threats

Limitations of anti-malware tools are exacerbated
when dealing with next-generation malware

Goal

To propose malware analysis & detection infrastructures
that overcome the limitations of current technology
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Contributions at a glance

1. Dynamic and Transparent Analysis of Commodity Production
Systems
(ASE 2010)

2. Conqueror: Tamper-proof Code Execution on Legacy Systems
(DIMVA 2010)

3. Live and Trustworthy Forensic Analysis of Commodity
Production Systems
(RAID 2010)

4. A Framework for Behavior-based Malware Analysis in the Cloud
(ICISS 2009)
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Transparent and efficient analysis
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Dynamic and Transparent Analysis of Commodity Production Systems
(ASE 2010)



Problem definition

How to monitor the execution of a suspicious program?
(worst-case scenario: kernel-level malware)

Kernel-based analysis Out-of-the-box analysis
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Kernel-based approaches

The analysis tool is implemented as a kernel module

To analyze kernel-level code, these approaches leverage another
kernel-level module . . .

. . . it is like a dog chasing its tail!
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Out-of-the-box approaches

The analyzer leverages VM-introspection techniques

The target system must be already running inside a VM

is often able to detect VMs!

How to automatically generate procedures to detect CPU emulators
(WOOT 2009)
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Our solution

Exploit hardware support for virtualization to
achieve both efficiency and transparency
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Overview of the framework
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The framework is installed as the target system runs. It is
completely separated and more privileged than the analyzed OS
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The analyzed OS needs not to be modified at all
(i.e., the approach can be applied to closed-source OSes)
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The analysis tool runs in an isolated execution environment
(a defect in the tool does not affect the stability of the OS)
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At the end of the analysis, the infrastructure
can be removed on-the-fly
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An application: HyperDbg

A transparent kernel debugger built on top of our framework

Offers standard debugging features, at the kernel-level
(e.g., breakpoints, watchpoints, single-stepping)
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(e.g., breakpoints, watchpoints, single-stepping)

What are the key advantages of HyperDbg?

vs

Even kernel-level malware cannot affect its execution
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An application: HyperDbg

A transparent kernel debugger built on top of our framework

Offers standard debugging features, at the kernel-level
(e.g., breakpoints, watchpoints, single-stepping)

http://code.google.com/p/hyperdbg/
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Software-based code attestation
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Conqueror: Tamper-proof Code Execution on Legacy Systems
(DIMVA 2010)



Problem definition

How to guarantee that the execution of an anti-malware
tool has not been tampered?

1. Execute foo()

2. Send back the result

1. foo() has been executed?

2. Is the result of foo() authentic?

Can we prove (1) + (2) with a pure software-based solution?
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Conqueror: Bullet-proof software-based code attestation
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Memory and environment attestation
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Evaluation: Checksum computation time
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Live and trustworthy analysis

Potentially
compromised host

Trusted host

1. Load

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

Live and Trustworthy Forensic Analysis of Commodity Production Systems
(RAID 2010)



Problem definition

How to perform live post-infection (or post-intrusion) analysis,
with no service interruption ?
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HyperSleuth

A framework to perform live and trustworthy acquisition
of volatile data from commodity production systems
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HyperSleuth

A framework to perform live and trustworthy acquisition
of volatile data from commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

HyperSleuth is installed on an allegedly
compromised target as the system runs
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HyperSleuth

A framework to perform live and trustworthy acquisition
of volatile data from commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

The installation of HyperSleuth is attested
using Conqueror
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HyperSleuth

A framework to perform live and trustworthy acquisition
of volatile data from commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

The analyzed OS needs not to be modified at all,
applications continue to run with no service disruption
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HyperSleuth

A framework to perform live and trustworthy acquisition
of volatile data from commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

At the end of the analysis, the results can be
sent to the trusted host
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How?

1. A tiny hypervisor, based on the previous contribution

2. A secure loader (Conqueror) that installs the hypervisor
I It verifies the hypervisor’s code, data and its environment

Proposed applications

Lazy physical memory dumper

Lie detector (not discussed in this talk)

System call tracer (not discussed in this talk)
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HyperSleuth: Lazy physical memory dumper

Lazily dumps the content of physical memory

The CPU is not monopolized

Processes running in the system are not interrupted

State of dumped physical memory ≡ state of physical memory
at the time the dump is requested

Dump-on-Write (DOW)
(i.e., dump the page before it is modified by the guest)

Dump-on-Idle (DOI)
(i.e., dump the page when the guest is idle)
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Evaluation of the lazy physical memory dumper

Memory acquisition on a
heavy-loaded DNS server
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Evaluation of the lazy physical memory dumper

DRT bootstrap and installation
of the VMM
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Evaluation of the lazy physical memory dumper

When we started the dump, a lot of
frequently accessed pages were dumped
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Evaluation of the lazy physical memory dumper

Regular peaks were caused by
periodic dump of non-written pages
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Malware analysis in the cloud

Lab (L) User (U)

. . .

VirtualAlloc()

GetForegroundWindow()

hwnd

GetWindowText(hwnd1)

"Firefox"

CreateWindow(...)

hwnd2

A Framework for Behavior-based Malware Analysis in the Cloud
(ICISS 2009)



Incompleteness of dynamic behavior-based analysis

The execution environments used in
security labs can perform fine-grained

analyses, but are synthetic
(i.e., not realistic enough to trigger

malicious behaviors)
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Incompleteness of dynamic behavior-based analysis

End-users’ machines lack
computational power but provide

realistic environments
(they are the intended target of the

attack)
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Malware analysis in the cloud

Lab (L) User (U)

Execute and analyze in L,
but force the program to
behave as in U

L can analyze the behavior
of the program in a realistic
environment

U benefits from a more
fine-grained analysis and
one-way isolation
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Malware analysis in the cloud

Lab (L) User (U)

. . .

VirtualAlloc()

Intercept all system calls

Execute system calls that are
not environment
dependent in L

Proxy environment
dependent system calls to
U and proxy back the output
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Malware analysis in the cloud
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U satisfies the trigger
condition of the malicious
behavior
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activity
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Lab (L) User (U)

. . .

VirtualAlloc()

GetForegroundWindow()

hwnd

GetWindowText(hwnd1)

"Firefox"

CreateWindow(...)

hwnd2

socket(...)
. . .

U satisfies the trigger
condition of the malicious
behavior

L observes the malicious
activity

Roberto Paleari Dealing with next-generation malware 28



A summary of the contributions

An infrastructure to perform transparent dynamic
system-level analyses of deployed production systems
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A summary of the contributions

A software-based attestation scheme for tamper-proof code
execution on untrusted legacy systems
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A summary of the contributions

A framework to perform live and trustworthy acquisition of
volatile data from commodity production systems
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A summary of the contributions

A framework for improving the completeness of
behavior-based analysis of suspicious programs
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Other contributions

Malware detection & remediation

Automatic generation of remediation procedures for malware infections (USENIX 2010)
How to automatically generate procedures to detect CPU emulators (WOOT 2010)
How good are malware detectors at remediating infected systems? (DIMVA 2009)
FluXOR: detecting and monitoring fast-flux service networks (DIMVA 2008)

Vulnerability analysis

Surgically returning to randomized lib(c) (ACSAC 2009)
On race vulnerabilities in web applications (DIMVA 2009)
A hybrid analysis framework for detecting web application vulnerabilities (SESS 2009)
A smart fuzzer for x86 executables (SESS 2008)

Software testing

Testing system virtual machines (ISSTA 2010)
Differential testing of x86 disassemblers (ISSTA 2010)
Testing CPU emulators (ISSTA 2009)
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Dealing with next-generation malware

Thank you!
Any questions?

Roberto Paleari



Backup slides



Signature-based detection

Application code

+ +

+ +

+ +
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Signature-based detection

Application code

+ +

+ +

+ +

A signature is a sequence of bytes that
identifies a malicious sample
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Signature-based detection

Application code

+ +

+ +

+ +

Anti-malware tools are shipped with a
database of known signatures
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Signature-based detection

+ +

+ +

+ +

When a signature is found, the application is
considered to be infected
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Transparent and efficient analysis

Dynamic and Transparent Analysis of Commodity Production Systems
(ASE 2010)



Hardware-assisted virtualization in a nutshell
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The OS needs not to be modified

Minimal overhead

The hardware guarantees transparency & isolation

Available on commodity x86 CPUs
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Hardware-assisted virtualization in a nutshell

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

Hypervisor Kernel/App

Enter Exit Enter

Exit events interrupt the guest and transfer
the control of the execution to the hypervisor
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Hypervisor Kernel/App

Enter Exit Enter

The events that trigger an exit to root mode
can be configured dynamically
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Which events can be intercepted?

Events cause exits to root mode

All the events exit conditionally

Conditions are expressed as boolean conditions
(process name = “notepad.exe′′ ∧ syscall name = “NtReadFile′′)

Native events vs high-level events

Traced directly through
the hardware

Very low-level operations
(e.g., CPU exception)

Traced through
low-/high-level events

High-level operations
(e.g., Return from function)
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A summary of the events

Event Exit cause Native exit

ProcessSwitch Change of page table address
√

Exception Exception
√

Interrupt Interrupt
√

BreakpointHit Debug or page fault except.
WatchpointHit Page fault except.
FunctionEntry Break on function entry point
FunctionExit Break on return address
SyscallEntry Break on syscall entry point
SyscallExit Break on return address
IOOperationPort Port read/write

√

IOOperationMmap Watchpoint on device memory
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Software-based code attestation

Conqueror: Tamper-proof Code Execution on Legacy Systems
(DIMVA 2010)



Gadgets: Plain checksum computation

Most frequently used gadget

Simply updates the checksum

mov ADDR, %eax

mov (%eax), %eax

xor $0xa23bd430, %eax

add %eax, CHKSUM+4
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Gadgets: System mode attestation

Prevent the computation of the checksum from user mode

Update the checksum through privileged instructions

If executed in user mode, these instructions raise an exception

mov ADDR, %eax

mov (%eax), %eax

xor $0x1231d22, %eax

mov %eax, %dr3

mov %dr3, %ebx

add %ebx, CHKSUM
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Gadgets: IDT attestation

IDT is part of the TPEB

Normal checksum computation attests the content of the IDT

Need a gadget to attest the address of the IDT

mov ADDR, %eax

mov (%eax), %eax

add %eax, CHKSUM+8

sidt IDTR

mov IDTR+2, %eax

xor $0x6127f1, %eax

add %eax, CHKSUM+8
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Gadgets: Instruction and data pointers attestation

Based on self-modifying code

Prevent memory copy attacks (e.g., TLB desynchronization)

Attest that the VA ↔ PHY holds for read, write and fetch
operations

mov ADDR, %eax

mov (%eax), %eax

lea l smc, %ebx

roll $0x2, 0x1(%ebx)

l smc:

xor $0xdeadbeef, %eax

add %eax, CHKSUM+4
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Gadgets: Hypervisor detection

Rich ongoing debate on this topic . . .

Timing attacks are effective with an external time source
(i.e., the verifier)

Execute instructions that unconditionally trap to the hypervisor

mov ADDR, %eax

mov (%eax), %ebx

vmlaunch

xor $0x7b2a63ef, %ebx

sub %ebx, CHKSUM+8
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Estimating the maximum checksum computation time

Execution time of checksum functions can be precomputed
using a trusted system

Use Chebyshev’s inequality to estimate an upper bound on
computation

Pr(µ− σ ≤ X ≤ µ+ σ) ≥ 1− 1
λ2

Computation time
(including RTT)

Upper bound is ∆t = µ+ λσ

We choose λ = 11, to obtain a confidence > 99%

For a given checksum function, we estimate ∆t by challenging
the trusted system multiple times
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Live and trustworthy analysis

Live and Trustworthy Forensic Analysis of Commodity Production Systems
(RAID 2010)



Lazy physical memory dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

The VMM intercepts updates of the page table address, page-fault
exceptions, and CPU idle loops
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Lazy physical memory dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

During a context switch (CR3 update) the algorithm grants
read-only permissions to physical not yet dumped pages
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Lazy physical memory dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

Our write protection is reinforced after every update of the
page tables
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Lazy physical memory dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

Write accesses to pages not yet dumped trigger page fault
exceptions, and pages are dumped before being modified (DOW)
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Lazy physical memory dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

To guarantee termination, pending pages are dumped
on CPU idle loops
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Lie detector

Kernel-level malware insidious and dangerous
I Operate at a very high privilege level
I Able to hide any resource an attacker wants to protect

(e.g., processes, network communications, files)

Different techniques to force the OS to lie about its state

How can we disguise such liars?
I Retrieve Sguest , the state perceived by the (guest) system
I Retrieve SVMM , the state perceived by the VMM (OS-aware

inspection)
I Sguest = SVMM?
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Lie detector
Evaluation

Sample Characteristics Detected?

FU DKOM X
FUTo DKOM X
HaxDoor DKOM, SSDT hooking, API hooking X
HE4Hook SSDT hooking X
NtIllusion DLL injection X
NucleRoot API hooking X
Sinowal MBR infection, Run-time patching X
Smiscer DKOM, Run-time patching X
TDL3 DKOM, Run-time patching X
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Lie detector
Evaluation

Sample Characteristics Detected?

FU DKOM X
FUTo DKOM X
HaxDoor DKOM, SSDT hooking, API hooking X
HE4Hook SSDT hooking X
NtIllusion DLL injection X
NucleRoot API hooking X
Sinowal MBR infection, Run-time patching X
Smiscer DKOM, Run-time patching X
TDL3 DKOM, Run-time patching X

FUTo leverages DKOM to hide malicious resources. We scan
Windows’ internal structures that must be left intact to preserve

system functionalities
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Lie detector
Evaluation

Sample Characteristics Detected?

FU DKOM X
FUTo DKOM X
HaxDoor DKOM, SSDT hooking, API hooking X
HE4Hook SSDT hooking X
NtIllusion DLL injection X
NucleRoot API hooking X
Sinowal MBR infection, Run-time patching X
Smiscer DKOM, Run-time patching X
TDL3 DKOM, Run-time patching X

HaxDoor hooks system calls and filters their result. We observed
hidden registry keys were missing from the untrusted view.
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Malware analysis in the cloud

A Framework for Behavior-based Malware Analysis in the Cloud
(ICISS 2009)



A glimpse at the implementation

OS Kernel

Syscall hooking

Syscall (de) serialization

Syscall hooking

Syscall (de)serialization

L
o

ca
l

sy
sc

a
ll

OS Kernel

Syscall execution

Syscall (de)serialization

Syscall execution

Syscall (de)serialization

Remote syscall

Output arguments

Prototype implementation for Microsoft Windows XP and Linux
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A glimpse at the implementation

OS Kernel

Syscall hooking

Syscall (de) serialization

Syscall hooking

Syscall (de)serialization
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OS Kernel

Syscall execution

Syscall (de)serialization

Syscall execution

Syscall (de)serialization

Remote syscall

Output arguments

Intercept all system calls (through user-space hooking)
and analyze the resources they manipulate
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OS Kernel

Syscall hooking

Syscall (de) serialization

Syscall hooking
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OS Kernel

Syscall execution

Syscall (de)serialization

Syscall execution

Syscall (de)serialization

Remote syscall

Output arguments

Serialize environment dependent system calls and arguments
and transmit them over the network
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A glimpse at the implementation

OS Kernel

Syscall hooking

Syscall (de) serialization

Syscall hooking

Syscall (de)serialization
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OS Kernel

Syscall execution

Syscall (de)serialization

Syscall execution

Syscall (de)serialization

Remote syscall

Output arguments

End-user’s system is protected using one-way isolation

Roberto Paleari Dealing with next-generation malware 46



A glimpse at the implementation

OS Kernel

Syscall hooking

Syscall (de) serialization

Syscall hooking

Syscall (de)serialization

L
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OS Kernel

Syscall execution

Syscall (de)serialization

Syscall execution

Syscall (de)serialization

Remote syscall

Output arguments

Labs can devote all their computation power for the analysis and
can exploit hardware features, in combination with

recent advances in research
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Evaluation: Correctness and performance overhead

Correct execution of benign programs

Successfully executed multiple real-world benign programs

No interference with the correct execution of programs

Transparently accessed all resources residing on a remote host

Program Action Local Remote

ClamAV Scan (remote) files with (remote) signatures 166,539 1,238
Eudora Access and query (remote) address book 1,418,162 11,411
Gzip Compress (remote) files 19,715 93
MS IE Open a (remote) HTML document 1,263,385 10,260
MS Paint Browse, open, and edit (remote) pictures 1,177,818 9,708
Netcat Transfer (remote) files to another host 16,007 93
Notepad Browse, open, and edit (remote) text files 929,191 7,598
RegEdit Browse, view, and edit (remote) registry keys 1,573,995 13,697
Task Mgr. List (remote) running processes 33,339 241
WinRAR Decompress (remote) files 71,195 572
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Evaluation: Relative code coverage increase with malware
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