
Dealing with next-generation malware

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Doctor of Philosophy in Computer Science

Advisor: Prof. D. Bruschi
PhD Candidate: Roberto Paleari

The rise of malicious code

2002 2003 2004 2005 2006 2007 2008 2009

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

N
u

m
b

er
o

f
n

ew
si

g
n

a
tu

re
s

Period

Roberto Paleari Dealing with next-generation malware 2

The rise of malicious code

Today malware is a very
lucrative activity

Who lasts longer earns the most . . .

Roberto Paleari Dealing with next-generation malware 2

The rise of malicious code

Who lasts longer earns the most . . .

Roberto Paleari Dealing with next-generation malware 2

Long lasting malware

Spread/replicate fast

Hide the presence on the system

Obfuscate the code (e.g., encryption,
polymorphism, metamorphism)

Traditional signature-based approaches
are not effective anymore!

Roberto Paleari Dealing with next-generation malware 3

Long lasting malware

Spread/replicate fast

Hide the presence on the system

Obfuscate the code (e.g., encryption,
polymorphism, metamorphism)

Traditional signature-based approaches
are not effective anymore!

Roberto Paleari Dealing with next-generation malware 3

Current trend for malware analysis and detection

Static analysis is either too onerous or impossible
(malware is obfuscated & self-modifying)

Dynamic, behavior-based malware analysis

Run the suspicious program
and monitor its execution

Does it behave maliciously?

Roberto Paleari Dealing with next-generation malware 4

Current trend for malware analysis and detection

Static analysis is either too onerous or impossible
(malware is obfuscated & self-modifying)

Dynamic, behavior-based malware analysis

Run the suspicious program
and monitor its execution

Does it behave maliciously?

Roberto Paleari Dealing with next-generation malware 4

Limitations of dynamic approaches

Incompleteness

The analysis involves a limited number of
program paths

may behave maliciously only in very

specific circumstances

Non-transparency

The analysis tool can be detected

If detects the analyzer, it behaves like

Roberto Paleari Dealing with next-generation malware 5

Limitations of dynamic approaches

Incompleteness

The analysis involves a limited number of
program paths

may behave maliciously only in very

specific circumstances

Non-transparency

The analysis tool can be detected

If detects the analyzer, it behaves like

Roberto Paleari Dealing with next-generation malware 5

Limitations of dynamic approaches

How to perform post-infection analysis?

If the host has already been compromised,

could tamper with the execution of the

analysis tool

High run-time overhead

End hosts have strict real-time constraints

If the analysis takes too much, the detector

assumes a suspicious program is

Roberto Paleari Dealing with next-generation malware 5

Limitations of dynamic approaches

How to perform post-infection analysis?

If the host has already been compromised,

could tamper with the execution of the

analysis tool

High run-time overhead

End hosts have strict real-time constraints

If the analysis takes too much, the detector

assumes a suspicious program is

Roberto Paleari Dealing with next-generation malware 5

Research goal

Next-generation malware is a new category
of highly-sophisticated malicious threats

Limitations of anti-malware tools are exacerbated
when dealing with next-generation malware

Goal

To propose malware analysis & detection infrastructures
that overcome the limitations of current technology

Roberto Paleari Dealing with next-generation malware 6

Contributions at a glance

1. Dynamic and Transparent Analysis of Commodity Production
Systems
(ASE 2010)

2. Conqueror: Tamper-proof Code Execution on Legacy Systems
(DIMVA 2010)

3. Live and Trustworthy Forensic Analysis of Commodity
Production Systems
(RAID 2010)

4. A Framework for Behavior-based Malware Analysis in the Cloud
(ICISS 2009)

Roberto Paleari Dealing with next-generation malware 7

Transparent and efficient analysis

Operating system kernel

User mode

Kernel mode

User
process

User
process

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Install

Remove E
xi
t

In
sp
ec
t

Dynamic and Transparent Analysis of Commodity Production Systems
(ASE 2010)

Problem definition

How to monitor the execution of a suspicious program?
(worst-case scenario: kernel-level malware)

Kernel-based analysis Out-of-the-box analysis

Roberto Paleari Dealing with next-generation malware 9

Problem definition

How to monitor the execution of a suspicious program?
(worst-case scenario: kernel-level malware)

Kernel-based analysis

Out-of-the-box analysis

Roberto Paleari Dealing with next-generation malware 9

Problem definition

How to monitor the execution of a suspicious program?
(worst-case scenario: kernel-level malware)

Kernel-based analysis Out-of-the-box analysis

Roberto Paleari Dealing with next-generation malware 9

Kernel-based approaches

The analysis tool is implemented as a kernel module

To analyze kernel-level code, these approaches leverage another
kernel-level module . . .

. . . it is like a dog chasing its tail!

Roberto Paleari Dealing with next-generation malware 10

Kernel-based approaches

The analysis tool is implemented as a kernel module

To analyze kernel-level code, these approaches leverage another
kernel-level module . . .

. . . it is like a dog chasing its tail!

Roberto Paleari Dealing with next-generation malware 10

Out-of-the-box approaches

The analyzer leverages VM-introspection techniques

The target system must be already running inside a VM

is often able to detect VMs!

How to automatically generate procedures to detect CPU emulators
(WOOT 2009)

Roberto Paleari Dealing with next-generation malware 11

Out-of-the-box approaches

The analyzer leverages VM-introspection techniques

The target system must be already running inside a VM

is often able to detect VMs!

How to automatically generate procedures to detect CPU emulators
(WOOT 2009)

Roberto Paleari Dealing with next-generation malware 11

Our solution

Exploit hardware support for virtualization to
achieve both efficiency and transparency

Roberto Paleari Dealing with next-generation malware 12

Overview of the framework

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Non-root mode

Root mode

Framework

Analysis
toolE

xi
t

In
sp
ec
t

Roberto Paleari Dealing with next-generation malware 13

Overview of the framework

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Non-root mode

Root mode

Framework

Analysis
tool

E
xi
t

In
sp
ec
t

The framework is installed as the target system runs. It is
completely separated and more privileged than the analyzed OS

Roberto Paleari Dealing with next-generation malware 13

Overview of the framework

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Non-root mode

Root mode

Framework

Analysis
tool

E
xi
t

In
sp
ec
t

The analyzed OS needs not to be modified at all
(i.e., the approach can be applied to closed-source OSes)

Roberto Paleari Dealing with next-generation malware 13

Overview of the framework

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Non-root mode

Root mode

Framework

Analysis
tool

E
xi
t

In
sp
ec
t

The analysis tool runs in an isolated execution environment
(a defect in the tool does not affect the stability of the OS)

Roberto Paleari Dealing with next-generation malware 13

Overview of the framework

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Non-root mode

Root mode

Framework

Analysis
tool

E
xi
t

In
sp
ec
t

At the end of the analysis, the infrastructure
can be removed on-the-fly

Roberto Paleari Dealing with next-generation malware 13

An application: HyperDbg

A transparent kernel debugger built on top of our framework

Offers standard debugging features, at the kernel-level
(e.g., breakpoints, watchpoints, single-stepping)

Roberto Paleari Dealing with next-generation malware 14

An application: HyperDbg

A transparent kernel debugger built on top of our framework

Offers standard debugging features, at the kernel-level
(e.g., breakpoints, watchpoints, single-stepping)

What are the key advantages of HyperDbg?

vs

Even kernel-level malware cannot affect its execution

Roberto Paleari Dealing with next-generation malware 14

An application: HyperDbg

A transparent kernel debugger built on top of our framework

Offers standard debugging features, at the kernel-level
(e.g., breakpoints, watchpoints, single-stepping)

What are the key advantages of HyperDbg?

vs

The target needs not to be running inside a VM

Roberto Paleari Dealing with next-generation malware 14

An application: HyperDbg

A transparent kernel debugger built on top of our framework

Offers standard debugging features, at the kernel-level
(e.g., breakpoints, watchpoints, single-stepping)

http://code.google.com/p/hyperdbg/

Roberto Paleari Dealing with next-generation malware 14

http://code.google.com/p/hyperdbg/

Software-based code attestation

Send function

Executable

c0

c1

c2
c3

c4
h0

c6

c7

c8

c9

c10

c11

c12

c13

c14c15
c16

c5

h1

h2h3

Epilogue

Checksum
loop

IDT

Checksum function

Prologue
BASE

BASE + 0xFFF

BASE + SIZE

Conqueror: Tamper-proof Code Execution on Legacy Systems
(DIMVA 2010)

Problem definition

How to guarantee that the execution of an anti-malware
tool has not been tampered?

1. Execute foo()

2. Send back the result

1. foo() has been executed?

2. Is the result of foo() authentic?

Can we prove (1) + (2) with a pure software-based solution?

Roberto Paleari Dealing with next-generation malware 16

Problem definition

How to guarantee that the execution of an anti-malware
tool has not been tampered?

1. Execute foo()

2. Send back the result

1. foo() has been executed?

2. Is the result of foo() authentic?

Can we prove (1) + (2) with a pure software-based solution?

Roberto Paleari Dealing with next-generation malware 16

Problem definition

How to guarantee that the execution of an anti-malware
tool has not been tampered?

1. Execute foo()

2. Send back the result

1. foo() has been executed?

2. Is the result of foo() authentic?

Can we prove (1) + (2) with a pure software-based solution?

Roberto Paleari Dealing with next-generation malware 16

Conqueror: Bullet-proof software-based code attestation

t0

Verifier Untrusted system

1. Checksum function

2. Decryption key

4
6

3
.

C
o

m
p

u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Attests the content of the memory and
the execution environment

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

Roberto Paleari Dealing with next-generation malware 17

Conqueror: Bullet-proof software-based code attestation

t0

Verifier Untrusted system

1. Checksum function
2. Decryption key

4
6

3
.

C
o

m
p

u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Attests the content of the memory and
the execution environment

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

Roberto Paleari Dealing with next-generation malware 17

Conqueror: Bullet-proof software-based code attestation

Verifier Untrusted system

1. Checksum function
2. Decryption key

4
6

3
.

C
o

m
p

u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Attests the content of the memory and
the execution environment

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

Roberto Paleari Dealing with next-generation malware 17

Conqueror: Bullet-proof software-based code attestation

t ′

Verifier Untrusted system

1. Checksum function
2. Decryption key

4

6

3
.

C
o

m
p

u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Attests the content of the memory and
the execution environment

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

Roberto Paleari Dealing with next-generation malware 17

Conqueror: Bullet-proof software-based code attestation

Verifier Untrusted system

1. Checksum function
2. Decryption key

4
6

3
.

C
o

m
p

u
te

ch
eck

su
m

5. Checksum

7. Output
Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Attests the content of the memory and
the execution environment

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

Roberto Paleari Dealing with next-generation malware 17

Memory and environment attestation

Send function

Executable

TPEB

Untrusted system

c0

c1

c2
c3

c4
h0

c6

c7

c8

c9

c10

c11

c12

c13

c14c15
c16

c5

h1

h2h3

Epilogue

Checksum
loop

IDT

Checksum function

Prologue
BASE

BASE + 0xFFF

BASE + SIZE

Checksum computation over the region
[BASE, BASE + SIZE)

Attest the execution environment

I Maximum privileges
I Interrupts disabled
I No hypervisor

Roberto Paleari Dealing with next-generation malware 18

Evaluation: Checksum computation time

 104

 106

 108

 110

 112

 114

 116

 118

 0 10 20 30 40 50 60

T
im

e
(m

s)

measurements

∆t

µhvm - 11 σhvm

Preliminary static analysis (disassembly)

No attack
Hypervisor-based attack

No checksum was forged in time to be considered valid

No authentic checksum was considered forged

Roberto Paleari Dealing with next-generation malware 19

Live and trustworthy analysis

Potentially
compromised host

Trusted host

1. Load

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

Live and Trustworthy Forensic Analysis of Commodity Production Systems
(RAID 2010)

Problem definition

How to perform live post-infection (or post-intrusion) analysis,
with no service interruption ?

Roberto Paleari Dealing with next-generation malware 21

HyperSleuth

A framework to perform live and trustworthy acquisition
of volatile data from commodity production systems

Roberto Paleari Dealing with next-generation malware 22

HyperSleuth

A framework to perform live and trustworthy acquisition
of volatile data from commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

HyperSleuth is installed on an allegedly
compromised target as the system runs

Roberto Paleari Dealing with next-generation malware 22

HyperSleuth

A framework to perform live and trustworthy acquisition
of volatile data from commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

The installation of HyperSleuth is attested
using Conqueror

Roberto Paleari Dealing with next-generation malware 22

HyperSleuth

A framework to perform live and trustworthy acquisition
of volatile data from commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

The analyzed OS needs not to be modified at all,
applications continue to run with no service disruption

Roberto Paleari Dealing with next-generation malware 22

HyperSleuth

A framework to perform live and trustworthy acquisition
of volatile data from commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

At the end of the analysis, the results can be
sent to the trusted host

Roberto Paleari Dealing with next-generation malware 22

How?

1. A tiny hypervisor, based on the previous contribution

2. A secure loader (Conqueror) that installs the hypervisor
I It verifies the hypervisor’s code, data and its environment

Proposed applications

Lazy physical memory dumper

Lie detector (not discussed in this talk)

System call tracer (not discussed in this talk)

Roberto Paleari Dealing with next-generation malware 23

HyperSleuth: Lazy physical memory dumper

Lazily dumps the content of physical memory

The CPU is not monopolized

Processes running in the system are not interrupted

State of dumped physical memory ≡ state of physical memory
at the time the dump is requested

Dump-on-Write (DOW)
(i.e., dump the page before it is modified by the guest)

Dump-on-Idle (DOI)
(i.e., dump the page when the guest is idle)

Roberto Paleari Dealing with next-generation malware 24

HyperSleuth: Lazy physical memory dumper

Lazily dumps the content of physical memory

The CPU is not monopolized

Processes running in the system are not interrupted

State of dumped physical memory ≡ state of physical memory
at the time the dump is requested

Dump-on-Write (DOW)
(i.e., dump the page before it is modified by the guest)

Dump-on-Idle (DOI)
(i.e., dump the page when the guest is idle)

Roberto Paleari Dealing with next-generation malware 24

Evaluation of the lazy physical memory dumper

Memory acquisition on a
heavy-loaded DNS server

Roberto Paleari Dealing with next-generation malware 25

Evaluation of the lazy physical memory dumper

DRT bootstrap and installation
of the VMM

Roberto Paleari Dealing with next-generation malware 25

Evaluation of the lazy physical memory dumper

When we started the dump, a lot of
frequently accessed pages were dumped

Roberto Paleari Dealing with next-generation malware 25

Evaluation of the lazy physical memory dumper

Regular peaks were caused by
periodic dump of non-written pages

Roberto Paleari Dealing with next-generation malware 25

Malware analysis in the cloud

Lab (L) User (U)

. . .

VirtualAlloc()

GetForegroundWindow()

hwnd

GetWindowText(hwnd1)

"Firefox"

CreateWindow(...)

hwnd2

A Framework for Behavior-based Malware Analysis in the Cloud
(ICISS 2009)

Incompleteness of dynamic behavior-based analysis

The execution environments used in
security labs can perform fine-grained

analyses, but are synthetic
(i.e., not realistic enough to trigger

malicious behaviors)

Roberto Paleari Dealing with next-generation malware 27

Incompleteness of dynamic behavior-based analysis

End-users’ machines lack
computational power but provide

realistic environments
(they are the intended target of the

attack)

Roberto Paleari Dealing with next-generation malware 27

Malware analysis in the cloud

Lab (L) User (U)

Execute and analyze in L,
but force the program to
behave as in U

L can analyze the behavior
of the program in a realistic
environment

U benefits from a more
fine-grained analysis and
one-way isolation

Roberto Paleari Dealing with next-generation malware 28

Malware analysis in the cloud

Lab (L) User (U)

. . .

VirtualAlloc()

Intercept all system calls

Execute system calls that are
not environment
dependent in L

Proxy environment
dependent system calls to
U and proxy back the output

Roberto Paleari Dealing with next-generation malware 28

Malware analysis in the cloud

Lab (L) User (U)

. . .

VirtualAlloc()

GetForegroundWindow()

hwnd

GetWindowText(hwnd1)

Intercept all system calls

Execute system calls that are
not environment
dependent in L

Proxy environment
dependent system calls to
U and proxy back the output

Roberto Paleari Dealing with next-generation malware 28

Malware analysis in the cloud

Lab (L) User (U)

. . .

VirtualAlloc()

GetForegroundWindow()

hwnd

GetWindowText(hwnd1)

"Firefox"

U satisfies the trigger
condition of the malicious
behavior

L observes the malicious
activity

Roberto Paleari Dealing with next-generation malware 28

Malware analysis in the cloud

Lab (L) User (U)

. . .

VirtualAlloc()

GetForegroundWindow()

hwnd

GetWindowText(hwnd1)

"Firefox"

CreateWindow(...)

hwnd2

socket(...)
. . .

U satisfies the trigger
condition of the malicious
behavior

L observes the malicious
activity

Roberto Paleari Dealing with next-generation malware 28

A summary of the contributions

An infrastructure to perform transparent dynamic
system-level analyses of deployed production systems

Roberto Paleari Dealing with next-generation malware 29

A summary of the contributions

A software-based attestation scheme for tamper-proof code
execution on untrusted legacy systems

Roberto Paleari Dealing with next-generation malware 29

A summary of the contributions

A framework to perform live and trustworthy acquisition of
volatile data from commodity production systems

Roberto Paleari Dealing with next-generation malware 29

A summary of the contributions

A framework for improving the completeness of
behavior-based analysis of suspicious programs

Roberto Paleari Dealing with next-generation malware 29

Other contributions

Malware detection & remediation

Automatic generation of remediation procedures for malware infections (USENIX 2010)
How to automatically generate procedures to detect CPU emulators (WOOT 2010)
How good are malware detectors at remediating infected systems? (DIMVA 2009)
FluXOR: detecting and monitoring fast-flux service networks (DIMVA 2008)

Vulnerability analysis

Surgically returning to randomized lib(c) (ACSAC 2009)
On race vulnerabilities in web applications (DIMVA 2009)
A hybrid analysis framework for detecting web application vulnerabilities (SESS 2009)
A smart fuzzer for x86 executables (SESS 2008)

Software testing

Testing system virtual machines (ISSTA 2010)
Differential testing of x86 disassemblers (ISSTA 2010)
Testing CPU emulators (ISSTA 2009)

Roberto Paleari Dealing with next-generation malware 30

Dealing with next-generation malware

Thank you!
Any questions?

Roberto Paleari

Backup slides

Signature-based detection

Application code

+ +

+ +

+ +

Roberto Paleari Dealing with next-generation malware 33

Signature-based detection

Application code

+ +

+ +

+ +

A signature is a sequence of bytes that
identifies a malicious sample

Roberto Paleari Dealing with next-generation malware 33

Signature-based detection

Application code

+ +

+ +

+ +

Anti-malware tools are shipped with a
database of known signatures

Roberto Paleari Dealing with next-generation malware 33

Signature-based detection

+ +

+ +

+ +

When a signature is found, the application is
considered to be infected

Roberto Paleari Dealing with next-generation malware 33

Transparent and efficient analysis

Dynamic and Transparent Analysis of Commodity Production Systems
(ASE 2010)

Hardware-assisted virtualization in a nutshell

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

Roberto Paleari Dealing with next-generation malware 35

Hardware-assisted virtualization in a nutshell

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

Roberto Paleari Dealing with next-generation malware 35

Hardware-assisted virtualization in a nutshell

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

The OS needs not to be modified

Minimal overhead

The hardware guarantees transparency & isolation

Available on commodity x86 CPUs

Roberto Paleari Dealing with next-generation malware 35

Hardware-assisted virtualization in a nutshell

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

Hypervisor Kernel/App

Enter Exit Enter

Exit events interrupt the guest and transfer
the control of the execution to the hypervisor

Roberto Paleari Dealing with next-generation malware 35

Hardware-assisted virtualization in a nutshell

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

Hypervisor Kernel/App

Enter Exit Enter

The events that trigger an exit to root mode
can be configured dynamically

Roberto Paleari Dealing with next-generation malware 35

Which events can be intercepted?

Events cause exits to root mode

All the events exit conditionally

Conditions are expressed as boolean conditions
(process name = “notepad.exe′′ ∧ syscall name = “NtReadFile′′)

Native events vs high-level events

Traced directly through
the hardware

Very low-level operations
(e.g., CPU exception)

Traced through
low-/high-level events

High-level operations
(e.g., Return from function)

Roberto Paleari Dealing with next-generation malware 36

Which events can be intercepted?

Events cause exits to root mode

All the events exit conditionally

Conditions are expressed as boolean conditions
(process name = “notepad.exe′′ ∧ syscall name = “NtReadFile′′)

Native events vs high-level events

Traced directly through
the hardware

Very low-level operations
(e.g., CPU exception)

Traced through
low-/high-level events

High-level operations
(e.g., Return from function)

Roberto Paleari Dealing with next-generation malware 36

A summary of the events

Event Exit cause Native exit

ProcessSwitch Change of page table address
√

Exception Exception
√

Interrupt Interrupt
√

BreakpointHit Debug or page fault except.
WatchpointHit Page fault except.
FunctionEntry Break on function entry point
FunctionExit Break on return address
SyscallEntry Break on syscall entry point
SyscallExit Break on return address
IOOperationPort Port read/write

√

IOOperationMmap Watchpoint on device memory

Roberto Paleari Dealing with next-generation malware 37

Software-based code attestation

Conqueror: Tamper-proof Code Execution on Legacy Systems
(DIMVA 2010)

Gadgets: Plain checksum computation

Most frequently used gadget

Simply updates the checksum

mov ADDR, %eax

mov (%eax), %eax

xor $0xa23bd430, %eax

add %eax, CHKSUM+4

Roberto Paleari Dealing with next-generation malware 39

Gadgets: System mode attestation

Prevent the computation of the checksum from user mode

Update the checksum through privileged instructions

If executed in user mode, these instructions raise an exception

mov ADDR, %eax

mov (%eax), %eax

xor $0x1231d22, %eax

mov %eax, %dr3

mov %dr3, %ebx

add %ebx, CHKSUM

Roberto Paleari Dealing with next-generation malware 39

Gadgets: IDT attestation

IDT is part of the TPEB

Normal checksum computation attests the content of the IDT

Need a gadget to attest the address of the IDT

mov ADDR, %eax

mov (%eax), %eax

add %eax, CHKSUM+8

sidt IDTR

mov IDTR+2, %eax

xor $0x6127f1, %eax

add %eax, CHKSUM+8

Roberto Paleari Dealing with next-generation malware 39

Gadgets: Instruction and data pointers attestation

Based on self-modifying code

Prevent memory copy attacks (e.g., TLB desynchronization)

Attest that the VA ↔ PHY holds for read, write and fetch
operations

mov ADDR, %eax

mov (%eax), %eax

lea l smc, %ebx

roll $0x2, 0x1(%ebx)

l smc:

xor $0xdeadbeef, %eax

add %eax, CHKSUM+4

Roberto Paleari Dealing with next-generation malware 39

Gadgets: Hypervisor detection

Rich ongoing debate on this topic . . .

Timing attacks are effective with an external time source
(i.e., the verifier)

Execute instructions that unconditionally trap to the hypervisor

mov ADDR, %eax

mov (%eax), %ebx

vmlaunch

xor $0x7b2a63ef, %ebx

sub %ebx, CHKSUM+8

Roberto Paleari Dealing with next-generation malware 39

Estimating the maximum checksum computation time

Execution time of checksum functions can be precomputed
using a trusted system

Use Chebyshev’s inequality to estimate an upper bound on
computation

Pr(µ− σ ≤ X ≤ µ+ σ) ≥ 1− 1
λ2

Computation time
(including RTT)

Upper bound is ∆t = µ+ λσ

We choose λ = 11, to obtain a confidence > 99%

For a given checksum function, we estimate ∆t by challenging
the trusted system multiple times

Roberto Paleari Dealing with next-generation malware 40

Live and trustworthy analysis

Live and Trustworthy Forensic Analysis of Commodity Production Systems
(RAID 2010)

Lazy physical memory dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

The VMM intercepts updates of the page table address, page-fault
exceptions, and CPU idle loops

Roberto Paleari Dealing with next-generation malware 42

Lazy physical memory dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

During a context switch (CR3 update) the algorithm grants
read-only permissions to physical not yet dumped pages

Roberto Paleari Dealing with next-generation malware 42

Lazy physical memory dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

Our write protection is reinforced after every update of the
page tables

Roberto Paleari Dealing with next-generation malware 42

Lazy physical memory dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

Write accesses to pages not yet dumped trigger page fault
exceptions, and pages are dumped before being modified (DOW)

Roberto Paleari Dealing with next-generation malware 42

Lazy physical memory dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

To guarantee termination, pending pages are dumped
on CPU idle loops

Roberto Paleari Dealing with next-generation malware 42

Lie detector

Kernel-level malware insidious and dangerous
I Operate at a very high privilege level
I Able to hide any resource an attacker wants to protect

(e.g., processes, network communications, files)

Different techniques to force the OS to lie about its state

How can we disguise such liars?
I Retrieve Sguest , the state perceived by the (guest) system
I Retrieve SVMM , the state perceived by the VMM (OS-aware

inspection)
I Sguest = SVMM?

Roberto Paleari Dealing with next-generation malware 43

Lie detector
Evaluation

Sample Characteristics Detected?

FU DKOM X
FUTo DKOM X
HaxDoor DKOM, SSDT hooking, API hooking X
HE4Hook SSDT hooking X
NtIllusion DLL injection X
NucleRoot API hooking X
Sinowal MBR infection, Run-time patching X
Smiscer DKOM, Run-time patching X
TDL3 DKOM, Run-time patching X

Roberto Paleari Dealing with next-generation malware 44

Lie detector
Evaluation

Sample Characteristics Detected?

FU DKOM X
FUTo DKOM X
HaxDoor DKOM, SSDT hooking, API hooking X
HE4Hook SSDT hooking X
NtIllusion DLL injection X
NucleRoot API hooking X
Sinowal MBR infection, Run-time patching X
Smiscer DKOM, Run-time patching X
TDL3 DKOM, Run-time patching X

FUTo leverages DKOM to hide malicious resources. We scan
Windows’ internal structures that must be left intact to preserve

system functionalities

Roberto Paleari Dealing with next-generation malware 44

Lie detector
Evaluation

Sample Characteristics Detected?

FU DKOM X
FUTo DKOM X
HaxDoor DKOM, SSDT hooking, API hooking X
HE4Hook SSDT hooking X
NtIllusion DLL injection X
NucleRoot API hooking X
Sinowal MBR infection, Run-time patching X
Smiscer DKOM, Run-time patching X
TDL3 DKOM, Run-time patching X

HaxDoor hooks system calls and filters their result. We observed
hidden registry keys were missing from the untrusted view.

Roberto Paleari Dealing with next-generation malware 44

Malware analysis in the cloud

A Framework for Behavior-based Malware Analysis in the Cloud
(ICISS 2009)

A glimpse at the implementation

OS Kernel

Syscall hooking

Syscall (de) serialization

Syscall hooking

Syscall (de)serialization

L
o

ca
l

sy
sc

a
ll

OS Kernel

Syscall execution

Syscall (de)serialization

Syscall execution

Syscall (de)serialization

Remote syscall

Output arguments

Prototype implementation for Microsoft Windows XP and Linux

Roberto Paleari Dealing with next-generation malware 46

A glimpse at the implementation

OS Kernel

Syscall hooking

Syscall (de) serialization

Syscall hooking

Syscall (de)serialization

L
o

ca
l

sy
sc

a
ll

OS Kernel

Syscall execution

Syscall (de)serialization

Syscall execution

Syscall (de)serialization

Remote syscall

Output arguments

Intercept all system calls (through user-space hooking)
and analyze the resources they manipulate

Roberto Paleari Dealing with next-generation malware 46

A glimpse at the implementation

OS Kernel

Syscall hooking

Syscall (de) serialization

Syscall hooking

Syscall (de)serialization

L
o

ca
l

sy
sc

a
ll

OS Kernel

Syscall execution

Syscall (de)serialization

Syscall execution

Syscall (de)serialization

Remote syscall

Output arguments

Serialize environment dependent system calls and arguments
and transmit them over the network

Roberto Paleari Dealing with next-generation malware 46

A glimpse at the implementation

OS Kernel

Syscall hooking

Syscall (de) serialization

Syscall hooking

Syscall (de)serialization

L
o

ca
l

sy
sc

a
ll

OS Kernel

Syscall execution

Syscall (de)serialization

Syscall execution

Syscall (de)serialization

Remote syscall

Output arguments

End-user’s system is protected using one-way isolation

Roberto Paleari Dealing with next-generation malware 46

A glimpse at the implementation

OS Kernel

Syscall hooking

Syscall (de) serialization

Syscall hooking

Syscall (de)serialization

L
o

ca
l

sy
sc

a
ll

OS Kernel

Syscall execution

Syscall (de)serialization

Syscall execution

Syscall (de)serialization

Remote syscall

Output arguments

Labs can devote all their computation power for the analysis and
can exploit hardware features, in combination with

recent advances in research

Roberto Paleari Dealing with next-generation malware 46

Evaluation: Correctness and performance overhead

Correct execution of benign programs

Successfully executed multiple real-world benign programs

No interference with the correct execution of programs

Transparently accessed all resources residing on a remote host

Program Action Local Remote

ClamAV Scan (remote) files with (remote) signatures 166,539 1,238
Eudora Access and query (remote) address book 1,418,162 11,411
Gzip Compress (remote) files 19,715 93
MS IE Open a (remote) HTML document 1,263,385 10,260
MS Paint Browse, open, and edit (remote) pictures 1,177,818 9,708
Netcat Transfer (remote) files to another host 16,007 93
Notepad Browse, open, and edit (remote) text files 929,191 7,598
RegEdit Browse, view, and edit (remote) registry keys 1,573,995 13,697
Task Mgr. List (remote) running processes 33,339 241
WinRAR Decompress (remote) files 71,195 572

Roberto Paleari Dealing with next-generation malware 47

Evaluation: Relative code coverage increase with malware

 0

 10

 20

 30

 40

 50

 60

R
el

at
iv

e
in

cr
ea

se
 o

f
 c

od
e

co
ve

ra
ge

 (
%

)

Malware

Environment 1
Environment 2
Environment 3
Environment 4
Average

Roberto Paleari Dealing with next-generation malware 48

