Automatic Generation of Remediation Procedures for Malware Infections

Roberto Paleati, Lorenzo Martignorfi, Emanuele Passerihi
Drew Davidsonr, Matt Fredriksori, Jon Giffirf, Somesh Jha

lUniversit degli Studi di Milano 2Universita degli Studi di Udine
{roberto, ema }@security.dico.unimi.it lorenzo.martignoni@uniud.it
3University of Wisconsin 4Georgia Institute of Technology
{davidson, mfredrik, jha }@cs.wisc.edu giffin@cc.gatech.edu
Abstract the malware after infection is not enough—it is also im-

Despite the widespread deployment of malware-perative that any harmful changes to the system made by
detection software, in many situations it is difficult to the malware areemediatedor reverted).

preemptively block a malicious program from infecting The safest way to remediate a system is to format
a system. Rather, signatures for detection are usualljhe permanent storage and re-install the operating sys-
available only after malware have started to infect a largaem from scratch. While effective, this approach is also
group of systems. Ideally, infected systems should beostly and usually results in a loss of valuable personal
reinstalled from scratch. However, due to the high costdata, particularly when data backups are incomplete or
of reinstallation, users may prefer to rely on the remedi-non-existent. Rather, end-users and administrators may
ation capabilities of malware detectors to revert the efprefer to remove only those resources left behind by the
fects of an infection. Unfortunately, current malware de-malware, leaving the rest of the system intact. Unfor-
tectors perform this task poorly, leaving users’ systemsunately, current anti-malware products perform poorly
in an unsafe or unstable state. This paper presents ait this task. A recent study demonstrated that even top-
architecture to automatically generatmediation pro- rated commercial anti-malware software fails to revert
ceduresfrom malicious programs—procedures that canthe effects of all the actions performed by malware dur-
be used to remediate all and only the effects of the maling infections[[15]. Needless to say, partially-remediated
ware’s execution in any infected system. We have imp|e-systems are unstable and prone to error.

mented a prototype of this architecture and used itto gen- |, this paper, we present a system that automatically
erate remediation procedures for a corpus of more thageneratesemediation procedurefrom malware bina-
200 malware binaries. Our evaluation demonstrates thgies These remediation procedures can be executed on

the algorithm outperforms the remediation capabilities ofinfected systems to restore the state to a clean config-

top-rated commercial malware detectors. uration, and are capable of remediating the effects of a
malware sampl@ posteriorj without observing the in-
1 Introduction fection take place. The fact that our remediation proce-

dures are generated to cover a particular malware binary,
One of the most pressing problems faced by the Intather than a specific sequence of system events resulting
ternet community today is the widespread diffusion ofin an infected staté [7, 19], amounts to a substantial break
malware. To defend against malware, users rely orfrom previous technologies. Using our system, one can
signature- or behavior-based anti-malware software thajenerate a single general-purpose executable that is ca-
attempts to detect and prevent malware from damagingable of reversing the effects of a malware sample on an
an end-host. Unfortunately, in many cases detection andrbitrary number of hostafter the fact In other words,
prevention are not possible. Malware authors have perene does not need to be aware of our system, or make
fected the practice of automatically creating a large num-use of it, untilafter the infection takes place. To achieve
ber ofvariants or malware that appears new to detectorsthis goal, we rely on a combination of dynamic program
but exhibits the same behavior when executed. For nevanalysis and semantic generalization to produce models
malware and variants, signatures for detection are rarelgf infection behavior that are resilient to common mal-
available by the time malware reaches a network, leavingvare anti-analysis techniques, such as the use of nonde-
a time window in which systems are susceptible to infecterminstic file names or the omission of malicious behav-
tion. In these situations, the ability to detect and removéor on some runs of the program. Then, we translate these

behavior models directly into executable procedures thaapplications in trusted systems, and on the automatic
remediate the effects of a malware infection. generation of signatures to detect malicious network traf-
We have implemented our ideas in a prototype toolfic.
Using the prototype, we automatically generated reme-
diation procedures on a corpus of more than 200 binary))
malware samples belonging to approximately 50 distincehavior-Based Malware Analysis: The prevalence
families. We evaluated the practical effectiveness of eac?f Packed, polymorphic, and metamorphic malware
procedure by testing its ability to recognize all of the highlights the deficiencies .of t_radltlonal detgctlon ap-
harmful effects of a malware executiotie positivey proaches based on syntactlc s!gnatures. This has urged
while leaving benign aspects of the system intaie(r_esearchers and se_zcurlty practltlone_rs to fpc_us on solu-
negatives The results of our evaluation attest to the ef-fiONS that base policy on the behavior exhibited by un-
fectiveness of our techniquén total, we reversed 98% rusted software. Behavior-based techniques attempt to
of the harmful effects while generating only a single falsgiNfér security-relevant information about an untrusted
positive although we were not able to remediate userProgram either by analyzing it statically [16] or by ob-
specific resource changes such as deleted documents affefVing its operation dynamically/[1,/11,121]. The major
personal file mutations. In contrast, the best commerciafifawback of current behavior-based techniques is their

anti-malware product remediated only 82% of the effectd'9h computational overhead. Recently, Kolbitsch et al.
of our corpus. developed an efficient analysis solution intended to re-

In summary, we make the following contributions: placg Fraditional anti-malware on thg desktop [8]: Closer
in spirit to the work presented here is that of Christodor-
e We present an architecture to automatically generescu et al.[[4]. They described an automatic approach
ate remediation procedures given binary malwarethat derives formal specifications of malicious behavior
samples. To the best of our knowledge, our architechy comparing the observed dynamic behavior of mali-
ture is the first to work under the assumption that in-cious and benign applications. Their technique uses de-
formation relating to a specific infection is not avail- pendence graphs, which express the relationships among
able; rather, characteristic infection patterns are obwvarious low-level behavior events, and is similar in many
served andjeneralizedo produce effective proce- ways to our high-level behavior abstraction component
dures in this setting. (see Section 4.2.1). Another area of much recent activity
. . is that of automatic classification of malware into fami-
e We evaluated an implementation of our framework

ies [2,(18]. For that type of work, malware is grouped
on on more than 200 real malware samples an . .
: : _— " Into clusters, which correspond to families, by some no-
found that it was able to remediate the resulting in-

: : o . tion of behavioral similarity. Our technique uses a form
fections more effectively than existing commercial : . .

- g of behavioral grouping as a means to remediate a system,
antivirus products. We have made this |mplementa-b her th | |assification b
tion available as an open-source pacl@ge : ut we go further than malware classification by attempt-

ing to remove the harmful effects of the malware on the
The rest of this paper is organized as follows: In Sec-system.
tion[2 we discuss related work. In Section]3.1, we de-
scribe the problem that our architecture solves by pre- . o "
senting a realistic example, and in Secfior] 3.2 we outIinézxelt(:l::]'ol1 (:I Unt{usttec&l At\pptllcatlons. tlr:haddmontt_o f
our approach, relating it to the example. In Secfipn 4,Wor at attempts to detect or prevent the execution o

we formalize the problem of malware remediation andma:llc;cr)]ushsoftvaa}re%fsotme fwor]lft has beetn (.jope;o miti-
present the technical details of our approach. In secdate the harmiul efiects of softwaeeposteriort Hsu

tion[5, we evaluate the effectiveness of our approach b)?t al. presented a framework for automatically repairing

testing a prototype implementation against real malware" infected system after monitoring the execution of the

- -
In Sectior{ we discuss the limitations of our approach,maIWare L]'_ The actu_al yvork of remed_le_ltmg a system
the security implications, and potential avenues for fu-given a detailed description of the malicious execution

ture work. We present concluding remarks in Sedfion 7. is similar to the way that we construct remediation pro-
cedures from generalized behavior models. Liang et al.

described an alternative approach called Alcatraz [10].

2 Related Work In Alcatraz, an untrusted application is executed inside
o) ~of a sandbox, and any change it makes is not commit-

Our contributions relate to ongoing research on behaviorieq yntil the program is confirmed to be innocuous. The

based malware analysis, on the execution of untrusteghanner in which a program is deemed innocuous is con-

The URL for this tool is http//www.cs.wisc.edu/ sidered orthogonal to the main issue of sandboxing. The
~mfredrik/remediate idea was later tweaked [19] so that all state changes made

http://www.cs.wisc.edu/~mfredrik/remediate
http://www.cs.wisc.edu/~mfredrik/remediate

by an application areached and upon program termina- any possible execution of this code. In this case, re-
tion the user decides whether or not to keep any changesovery includes:(1) deleting the file containing a copy
The primary differences between these techniques andf the malicious payload(2) deleting the registry key
the one presented in this paper is that they rely on increated to start the malware at bo¢8) disinfecting
formation regarding specific execution traces, whereas:\windows\user32.dll , and (4) restoring the original
our remediation procedures use generalized notions afonfiguration of the name resoluey..\etc\hosts t
the behavior of a malware instance. As such, our sysis important that the effects afl malicious actions taken
tem can remediate harmful effects of malware, includingby the malware are removed. For example, consider what
some effects that were not observed in a trace. happens wheifl), (2), and(3) are remediated, but not
(4). In this case, all internet traffic on the host remains
Automatic Signature Generation: The generalized subject to hijacking by the malware, so the system is still
behavior models that we use to construct executable rdd @ dangerous configuration. Many commercial prod-
mediation procedures can be viewed as generic signalCts would leave the system in this configuration [15].
tures relating the effects of a malicious program on sys- Completely remediating the effects of the malware in
tem resources. Different approaches have been proposé&igure[] is not as straightforward as the example might
for automatically generating attack signatures. Poly-suggest. First, high-level source code is usually not avail-
graph [14] is one of the first systems proposed by re-able when dealing with real malware. Given the well-
searchers to address the problem of generating netwodknown difficulty of statically analysing adversarial bi-
signatures to detect polymorphic worms. Polygraphnary code [[18], this means we must partially rely on
identifies invariant fragments of packets that are found irdynamic information. Although this example does not
all the network flows generated by the same worm, sincdllustrate it, there is a possibility that the malware con-
they are necessary for the worm to successfully exploit dains paths that are rarely executed under normal circum-
given vulnerability. These fragments are then combinedstances. Any harmful effects produced on such a path
into signatures using different techniques. Hamsa [9Wwould be difficult to account for in a remediation pro-
addresses the same problem using a different algorithroedure, because the problem of discovering such an ef-
that identifies and combines invariants. Hamsa's signafect dynamically is extremely difficult. Secondly, mal-
tures have better accuracy and are more resilient againgtare can appear to be nondetermistic by relying on sub-
attacks than Polygraph. Finally, Nemeéni[20] genertle details in its environment, such as the system clock
ates semantics-aware signatures to detect network intrer pseudorandom number generator. This behavior is of-
sions. Nemean’s methodology, consisting of high-levelten present even on common paths, and is apparent in
network traffic abstraction, clustering, and generalizationour example, despite its simplicity: Both the filename of
using automata learning, is similar to ours. However,the malicious payload and the name of the registry value
we operate on a fundamentally different domain thanused to activate the payload depend on randomness.

Nemean, which generates signatures of network packet Gijven the limited nature of dynamic program informa-

traces. tion, it may be hard to generate a remediation procedure
that precisely accounts for all of the nondeterminism in
3 Overview a program. Procedures that do so may mistakenly iden-

tify benign system resources as malicious and attempt to
In this section, we motivate our work using a realistic remediate them. Consider a remediation procedure that
example of a malware infection and present our architecattempts to account for the nondeterminism in our exam-
ture by walking through the steps that it takes to remedi{le by looking for all files in the system directory with

ate the example. the suffix.exe . While this policy would effectively cap-
ture the nondeterminism in the payload filename, any at-
3.1 Motivation tempt to remediate resources based on it would result in

the unacceptable removal of benign executables. Con-
Consider the malware whose pseudo-code is showRrersely, procedures that do not attempt to generalize ex-
in Figure[]. This program generates a random file-ecution behavior are likely to miss some malicious ef-
name located in the system directory, drops a malifects that must be remediated. For example, after run-
cious payload into the file, creates a new registry valuening the sample malware once, we might find that the
that causes the payload to be executed at system boptyload is delivered im:\windows\poqwz.exe . If a re-
time, tampers with the system’s network name resolvemediation procedure does not generalize this information
(c:\...\etc\hosts), and infects a benign system li- and only ever looks for this file when remediating infec-
brary (:\windows\user32.dll). Our goal is to gen- tions caused by other executions of this malware, then it
erate a procedure that remediates infections caused lwill miss the payload file most of the time, as it is not

1 // generate random file and value names

2 filename = "po" + random_alpha () + random_alpha () + random_alpha () + ".exe" ;
3 valuename = (random_int () % 2) ? "gqv" : "vq"

4 ...

5 // drop malicious code

6 f = CreateFile (”c: \windows \” + filename , GENERIC_WRITE ...);

7 WriteFile (f , malicious_buf ,)

8 WriteFile (f , other_malicious_buf ,oel)

9 ...

10 // start the newly created executable at boot

11 RegOpenKey(HKEY_LOCAL_MACHINE "..\Windows\CurrentVersion\Run" , &r);

12 if (RegQueryValueEx (r, valuename , NULL, REG_SZ ...) == ERROR_FILE_NOT_FOUND
13 RegSetKeyValue (r, valuename , REG_SZ filename , ...);

14 ...

15 // infect user32.dll

16 g = CreateFile ("c:\windows\user32.dIl" , FILE_APPEND_DATA ..., OPEN_EXISTING, ...);
17 WriteFile (g, malicious_buf ,)s

.8 ...

19 // hijack HTTP connections to www.google.com and www. citibank .com

20 h = CreateFile ("c:\windows\system32\drivers\etc\hosts" , ..., OPEN_EXISTING, ...);
21 ReadFile (h, buf , ...);

22 WriteFile (f, "67.42.10.3 www.google.com\n67.42.10.3 www.citibank.com" ,)

24 // delete main executable
25 DeleteFile ("c:\malware.exe");

Figure 1: Pseudo-code of a sample malicious program.

possible to observe the malware long enough to see afteflect the salient behavioral features of most malware.

possible variants of the payload file name. However, our technique can be extended to operate over
a wider set of high-level behaviors.
3.2 Architecture Overview The environment in which a program runs typically

affects its behavior, and malware often exhibits a certain
The architecture we have developed for generating regegree of nondeterminism. To account for these factors,
mediation procedures from malware binaries is shown inye collect several high-level behavior traces for each
Figurg[2. It has three primary componerits} an execu- sample. To do so, we vary the environment by chang-
tion monitor that infers the malware’s high-level behav- |ng factors that malware typ|ca||y re|y on, such as lo-
iors from a low-level trace(2) a component thagener- cale, service pack level, and so forth. Although not sup-
alizesthe high-level behaviors from multlple executions ported by our current imp|ementation, path exp|oration
of the malware, an@3) a component that produces exe- techniques[[12] can be applied in this component to ac-
cutable remediation procedures from generalized behav-qunt for a more complete subset of the malware’s be-
iors. The entire system works sequentially, with eachhayior, as in Bouncef [5]. The lack of path exploration
component using the information produced by the ongechniques is not a fundamental limitation of our system,
preceding it. and can be easilglugged intoour system.

Our high-level behavior extractor would infer that

High-Level Behavior Extraction: = The high-level be- the sample malware from Figuf§ 1 demonstrates the
havior extraction component (numbered 1 in Figure 2)ilecreation , RegistryCreation , DropAndAutostart
analyzes the semantics of a program to produce a semnd Filelnfection behaviors, with different argu-
guence of meaningful behaviors relevant to remediationments for FileCreation , RegistryCreation , and
Because malware authors usually obfuscate their binapropandautostart ~ on each execution.
ries, we rely on dynamic information to infer these be-
haviors; we execute binaries in a special environment (an
emulator) to extract a low-level execution trace, performBehavior Generalization: After producing a set of
analysis using manually constructed rules, and arrive at high-level behavior traces for a malware sample, we at-
high-level tracel[111]. Tablg]1 lists the high-level behav-tempt to account for nondeterminism by creating a gen-
iors we consider. Each behavior modifies the state of theral, abstract model of behavior that accounts for all of
system in some way and is parameterized by a set of athe concrete traces we observed (numbered 2 in Fig-
guments that determine which aspects of the system statee[2). Note that generalization attemptot@rapprox-
are affected. The behaviors currently listed correspond témate existing paths, thus encompassing future paths,
those that commonly occur in malware, that are mandarather than explore as many new paths as possible. In ef-
tory to infect a system, and were constructed manually tdect, thispatchessome of the incompleteness of dynamic

Malware

' ~ 3
Behavior Clust | - Remediation
monitorin T & procedure
g eralization \\%/%@rleration
— Q
0 w \ ’
Remediation
High-level ™~ i procedure
SR Behavior
behavior .
analysis clustering
— s J
-

Figure 2: Architecture of the system for generating remediation procedures. In this igdesiotes a system call
trace, B denotes a high-level behavior trace inferred from a system call ttadenotes a cluster, aréldenotes a
generalizectluster.

analysis by extrapolating observed information to future which it runs in search of symptoms of an infection, and
unseen executions of the malware. This is accomplishedemoves the symptoms whenever possible. It attempts
by recognizing when distinct behaviors from multiple to match each resource (file, process, or registry key) on
high-level traces, with possibly different arguments, arethe system against the constraints associated with each
actually instances of the same malicious activity. We re-generalized high-level behavior. For our running exam-
fer to this matching of behaviors atustering When a ple, each file is matched against the regular expression
cluster is identified, the arguments of its constituent be-c:\windows\po[[:alpha:]}{3}.exe associated with the
haviors are generalized to tolerate any differences thafirst argument of thedropAndAutoStart ~ behavior, an-
may be present in the actual values. Thus, nondetermimsther regular expression associated with the second ar-
ism is accounted for via overapproximation by ensuringgument, and a final one describing the content of the file.
that this generalization extends to future, unseen execuf such a file is found, then the registry values under the
tions. key ...\CurrentVersion\Run are matched against the

In the malware from Figurp]1, our technique would regular expressio@vivq) . If such a value is found and
cluster all instances of the same high-level behavior toits data matches the current filename being considered,

gether. For example, all instancesmépAndAutostart then all of the resources (the file and registry key pair)
would be clustered together and all instances ofare removed. Currently, we only produce remediation
Filelnfection would be clustered together. Be- procedures that operate on system files. For technical

cause there is likely variation among the arguments ofeasons explained in Sectiph 4, we do not handle user-
DropAndAutostart , We construct a regular expression specific files and resources. While this is a limitation
to tolerate minor differences while ensuring that be-of our current approach, we hope to remove it in future
nign files are not mistakenly identified. The final re- work.

sult of the computation for this behavior would be a
DropAndAutoStart behavior with generic file argument
c:\Wwindows\po[[:alpha:]}{3}.exe to generalize the
random filename at line 2, generic registry key/value pairIn this section, we present the details of our sys-

..\CurrentVersion\Run fqrthe registry touched at line tem for generating remediation procedures. We begin
11, and@vivg) for the registry value randomly created . formalizing the problem solved by our system and

atline 3. continue component-by-component describing the algo-
rithms used to solve the problem.

4 Generating Remediation Procedures

Remediation Procedure Generation: The third com-

ponent of our architecture (numbered 3 in Fidure 2) 9e"4 1 Problem Description
erates executable remediation procedures from the gen-
eralized behaviors produced in the previous step. Th&Vhen malware runs on a system, it may infect the system
resulting procedure examines the state of the system opby changing its persistent state in an undesirable way.

Behavior Arguments Description

FileCreation File name and content Creation of a new file
8 « RegistryCreation Key name and content Creation of a new registry value
§-§ DropAndAutostart File name and content. Key nameCreation of a new file and of a registry value con-
QL and content taining its name (to execute the file automatically at
@ e every boot)
DropAndExecute File and process name Creation and execution of a new executable
§_§ FileInfection File name and content. List of pre- Infection of an existing file
38 served regions
& £ Registrylnfection Key name and content Replacement of an existing registry value
e
3 -% FileDeletion File name Deletion of an existing file
ég RegistryDeletion Key name Deletion of an existing registry value

Table 1: High-level behaviors considered for remediation.

For our purposes, the stafe of a system is modeled infection relation for that malware that describes its be-
as an association from resource namégo data from havior. We can then use the information in the infection
a domainD. Individual elements of5 are referred to relation to enact changes on the system that remediate
asresources To simplify notation, we letS stand for the effects of the malware: restoring any files that were
the set of possible system states. Because most malwaremoved (V,.,,) or mutated §,,,.;), and removing files

is written for Windows platforms, our targeted resourcethat were added9,4;). We package this functionality
namespace consists of Windows filenames, registry kegs an executable remediation procedure, as described in
and value names, and process names. The data domaectiorf 3.P. In general, there are a number of approaches
is the set of all finite-length bit strings. that may realize the goal of constructing the infection re-

The infection behavior of a malware can be unoler_Iatlon corresponding to a given malware. In this paper,

stood as a transition relation between system stated'® focus on applying dynamic analysis to the malware

There are three ways in which the malware can mod_sample to extract the information necessary to construct

ify the state of a system(1) resources may be com- the infection relation.
pletely removed from the systeif2) new resources may

be added to the system, a(®) the data corresponding tr
to existing resources may be mutated. Because the infe
tion behavior of a malware can be succinctly describe
in terms of these three operations and the resources ov
which they operate, we represent it usingrafiection re-
lation R C S x N x § x S that encodes this informa-
tion. Intuitively, the infection relation describes the way
in which a particular malware changes the state of a sy
tem. Given an elemer{tS, N,cm, Sadd, Smut) € R, the
malware transforms stateinto a new state by removing
the resources labeled hy,..,,, adding the resources in

In practice, it is not usually possible to reconstruct the
ue infection relation from a malware binary. Rather, we
‘ompute a relation thaiverapproximateshe actual be-
avior for a finite set of execution paths exhibited by the
Falware. For example, we overapproximate the resource
names involved in th®ropAndAutoStart behavior
of Figure[] by creating a regular expression that matches
all of the resource names on the set of execution traces
Sive observed. Furthermore, our approximate infection re-
lations do not contain information regarding the removal
or mutation of non-system files, as it is generally not pos-

g d modifving th Note that th sible to restore this state without additional information
add, @nd modifying the resources ifj,.... Note that the not encoded in the malware. Of course, using an ap-

mfec'qon behay|or IS d?S.C”bed as a relation rather than %roximate infection relation for remediation introduces
function mapping. This is because of the fact that mal-

beh deterministically when it infect the possibility offalse negativesindfalse positives A
ware may behave hondeterministicaly when it Intects ;. negative occurs when the remediation fails to prop-
system—it may infect the same system state in differe

" : nErly reverse the changes left by the malware. Similarly, a

ways on two distinct executions. false positive occurs when remediation affects resources
After a given piece of malware has infected a systemthat were not touched by the malware. Both types of er-
the goal of remediation is to undo the effects of the in-ror are possible given the way we construct approximate
fection, returning the system to a clean state. More preinfection relations. For example, false positives may re-
cisely, given a malware binary, we seek to construct arsult from the overapproximation of resource hames with

regular expressions, whereas false negatives may resudtchically has one crucial advantage: the same high-level
from the fact that we do not account for all possible exe-behavior can be described in terms of multiple alterna-
cution paths in the malware. Thus, it is our goal to con-tive intermediate behaviors. For example, our high-level
struct an approximate infection relation that minimizesbehaviomropAndAutostart ~ can be represented in terms
false positives and false negatives of all possible low-level system call sequences that cre-
ate a new file, write executable content into it, and then
change the system configuration to activate the dropped
file at boot time. Because there are numerous distinct

This section details the specific algorithms and subsysways to accomplish this high-level task in terms of sys-

(depicted in Figurg]2). clean and straightforward way. Our heirarchical behavior

model formalism allows this, and thus makes our system
more resilient to this type of evasion.
Figure[3 shows a sample system call trace and two

Intuitively, the problem of high-level behavior extraction ©f the high-level behaviors extracted from it. The fig-
is to derive a concise description of the behavior semanUré shows both the concrete graphs and the template
tics demonstrated by a malware sample. Given a mallnstances that were matched. The first four system
ware samplen and a seD of high-level behavior tem- Calls in the trace (members, through s,) are exe-
platesthat describe events related to system state modificuted by the malware sample to replicate its payload
cation, the goal of this task is to produce a sequence of inl0 @ new file. These calls are associated with the
stances of the members Bt along with a corresponding layer-1 behavioFileCreation. $|m|larly, the system
low-level description of system events that match eactfallS s11, 513, and s14 are associated with the layer-1
template instance. behaviorRegistryCreation, and the last system call
The set of behavior templates used in our prototypel341) With the behavioFileDeletion. Since the be-

is given in Tablg L. To infer high-level behaviors from haviorsFileCreation andRegistryCreation are re-
a stream of system calls, we useultilayer behavior lated, the algorithm infers the high-level layer-2 behav-

specificationsas proposed in previous work [11]. Al- ior DropAndAutostart, which represents the fact that

though the details of the inference algorithm are beyondN® malware replicates and configures the system to exe-
the scope of this paper, we give a brief account of theCute the malicious payload at boot. Note that this high-
main points here. Each high-level behavior is describede"3| behavior was inferred hierarchically; the fact that
in terms of a hierarchical model. Each level of the hierar-PropAndAutoStart is present in the trace was inferred
chy is composed of a set béhavior summarieand their only from layer-1 behaviors, which were in turn inferred
accompanyingehavior graphs The graph for a given rom system calls originally found in the trace. By
behavior summary encodes the behavior operationally, iffedularizing the template definitions in this way, our
terms of events and the dependencies among them. THEgh-1evel behavior inference technique gains a certain
events in a graph at a particular level are defined in term@mount of resilience to obfuscations and differences in
of the summaries of levels lower in the hierarchy. TheMalware implementation [11].

top level of the hierarchy corresponds to the final output

of the inference, and the layers beneath it provide de4.2.2 Behavior Clustering

tails of incremental specificity, until the lowest level is

. — . 1 m
reached. In our prototype, the lowest level c:orrespond?'ven a se;_ of T'gh lelftl_e: beha""’tf trac{af@tr,]. - B} |
to a system call trace collected in a virtual environment.COésponaing 1o muftiple executions or the same mal-

We use a modified version of &y [3] to monitor an ware samplebehavior clusteringdentifies elements of
application for its system call trace distinct traces that correspond to the same malicious ac-

: : tivity. An admissible clusterinfpr a given set of traces is
The nodes in the behavior graphs at each layer cor- . .
grap Y set of behavior setg’,C,, ..., C,} that satisfies two

respond to events that are observed by the monitor, an e

the edges correspond to data dependencies between tﬁ%nd't'ons'

events. For example, in the graphs at the lowest level, 1 Al pehaviors in a given clusteg; have the same
system calls that operate on the same resource handle type For example, all behaviors are of type

have edges between their representative nodes that re-
flect this dependency. At the highest level, this relation-
ship is preserved by edges that denote the fact that the2. The clusteringpartitionsthe set of all events in ev-
corresponding set of high-level behaviors operate on the ery execution trace: no behavior is in more than one
same file. Representing high-level behavior graphs hier- cluster, and each behavior is in some cluster.

4.2 System Details

4.2.1 High-Level Behavior Extraction

DropAndAutostart.

s; NtCreateFile("pogqwz.exe") — f o _ _

so NtWriteFile(f, "...malicious code...") =Y [DropAndAutostart] (FileDeletion)
S3 NtWriteFile(f, "...other malicious code...") -
sa NtClose(f)

s11 NtOpenKey("Run") — T

s12 NtQueryValueKey(r, "vq") — FAILURE
s13 NtSetValueKey(r, "vg", "pogwz.exe")

s14 NtClose(r)

s21 NtOpenFile("...\system32\user32.dll") — g
s22 NtWriteFile(g, “...malicious data...")
s23 NtClose(g)

High-Level Behavior Summaries

szl NtOpenFile("c:\windows\hosts") — h . " " PR
s3> NtReadFile(h, 1024) — "% Copyright (c)..." DropAndAutostart("pogwz.exe", data , "Run", "vq",
s33 NtWriteFile(h, "67.42.10.3 www.google.com...”)) o [?quwz.exe)
s34 NtWriteFile(h, "67.42.10.3 www.citibank.com...”) FileCreation("poqwz.exe”, data)
s35 NitClose(h) FileDeletion("c: \malware.exe")
RegistryCreation("Run”, "vg", "pogwz.exe")
s41 NtDeleteFile("c:\malware.exe")

(b)

@)

Figure 3: The system call trace for our sampialware.exe (a) and high-level behaviors generated from the trace

(b).

In later stages of the system, it generalizes behaviorrace B7, the events are enumerated in execution order
in the same cluster by overapproximating their argumentnd added to the first cluster that satisfies the admissibil-
values. Thus, desirable clusterings are those that lead ity criterion discussed above. We discuss the details of
tighter overapproximations, while still grouping related matching event types below. If an event cannot be added
behaviors together in order to allow generalization. Asto any existing cluster, then a new cluster is initialized
an example, Figurg] 4 shows two high-level traces of ouwith the current event. This process is repeated until no
sample malicious program. We denote % behavior traces remain, at which point the current set of clusters is
observed in thé'" execution trace alz; For these traces, returned as the final result.

- 2
we want to group behavu_)tﬁ; andb; becaus_e _they cor- Intuitively, the heuristics in this algorithm rely on two
respond to the same activity, and generalizing their ar-

- o= asssumptiong(1) distinct executions of the malware ex-
guments leads to a tight overapproximation: we can Useijt similar malicious behaviors, ar(@) the ordering of

regular expressions that match a fairly small set of String?nalicious behaviors between executions is similar. By

(namel;l/,pg [r[; alpha :]J{?’_}:'XS)' Similarly, r‘:"e Wﬁm 0 selecting the trace with the greatest number of events to
groupb; with b; andbs with b3. However, had the sec- geaq the clustering process and assuming that different
ond trace contained anothgropAndAutostart behav- o, 00 itions contain a similar set of behaviors, we seek

lor foran executable namedrkiller.exe, then cluster- oy sterings that group as many behaviors together as pos-
ing by with this behavior would have resulted in a poor gj e By adding events to existing clusters in execution

generallzat[on. An optimal plustermg isone that 'n_CIUde,Sorder and assuming that the order does not vary substan-
all related high-level behaviors so that generalization will

.) tially between executions, we seek clusterings that match
create a powerful regular expression that finds all trace

Similar argument values, thus resulting in tighter over-

of a malicious behavior. On the other hand, an optimal, . imations in the behavior generalization phase of

clustering must not include unrelated high-level behavyg oy stem. Furthermore, these heuristics allow our al-

iors, as a.generallzauon of such a cluster is likely togorithm to operate efficiently: Algorithif] 1 runs in time

match benign system resources. linear in the number of execution traces and the length of
the traces.

Cluster Formation: Exhaustively searching for the For an example of how Algorithifn| 1 works, consider
optimal clustering of{B',...,B™} is infeasible, as the two high-level execution traces depicted in Figyre 4.
there are an exponential number of possibilities. ThusAs both traces are of equal length, the first is chosen,
we do not attempt to find an optimal clustering and in-in this caseB!. ClustersC;, C2, andCsz are initial-
stead rely on the heuristic method shown in Algoriffim 1.ized with behaviors}, b3, andb}, respectively.b! and

The algorithm begins by finding the execution trace withb? can then be matched, as they are both instances of
the greatest number of high-level behavi##$®*, and the DropAndAutostart high-level behavior. Simi-
creating an initial clustering by placing eaétt® in larly, b is matched td2, andb} is matched td?3. Fi-

its own clusterC;. Then, for each remaining behavior nally, the algorithm returns clustef€,C-,Cs} where

B ! | B’;’

DropAndAutostart Je = = = = = = = i »(DropAndAutostart
|
!
1 | 1
!
[RegistryCreation] | [RegistryCreation FileCreation]

'y A

i

PR L N L

FileInfection FileDeletion ! »| FileDeletion
!

FileInfection

O ‘ S
O X 2 [Cg)(:
b3 b3
bl 2 2 3
)'5 '
|
!
|
b%: DropAndAutostart("c: \.. \pogwz.exe", data, ".. \Run" , b%: DropAndAutostart("c: \... \pobxz.exe", data , "... \Run",
"vg", "poqwz.exe") | "vg", "pobxz.exe")
b%: FileDeletion("c: \malware.exe") ! bg: FileDeletion("c: \malware.exe")
|
bé: Filelnfection("... \etc \hosts", "67.42...", data) , bg: Filelnfection("... \etc \hosts", "67.42...", data)

Figure 4: High-level behavior clustering.

C; = {b},b?} represent®ropAndAutostart behav- duces more succinct graph representations of the mal-

iors,Co = {b3, b3} representsileDeletion behav- ware’s behavior that are largely independent of common
iors, andCs; = {bi,b3} representd=ileinfection forms of nondeterminism.
behaviors. After normalizing two graphs for comparison, we use

the VFIib2 graph isomorphism algorithml [6]. Although

Behavior Comparison: Our clustering algorithm re- isomorphism is a difficult problem and may be inefficient
quires a sub-algorithmisomorphig to compare two be- to compute on large graphs, we point out that the normal-
haviors. Intuitively, we perform this comparison hgr- ized behavior graphs resulting from real-world programs
malizingthe graphs corresponding to each behavior andre typically quite small, comprising no more than a few
then checking whether the resulting normalized graphglozen nodes.
are isomorphic. There is an important advantage in com-
paring the behavior graphs rather than their high-levely 5 3 Behavior Generalization
summaries: nondeterminism in a malicious program typ-
ically affects the summary of the behavior, but not the After clustering, we have several sets of behaviors
low-level operations used to achieve the behavior. Theregrouped by semantic similarity but still differing in cer-
fore, this approach is more resilient to nondeterminismtain details. For example, when we build clusters we
and performs a more thorough comparison, eventuallgroup together behaviors that differ in the specific re-
yielding more precise results. sources they identify. The goal of behavior generaliza-
The normalization we perform on each graph mainlytion is to produce a single canonical behavior that rep-
consists of abstracting away details of the behavior thatesents all of the members of a given cluster, as well as
are likely affected by nondeterminism. System call ar-variations of the members that are likely to result from
guments that represent resource names are replaced bther executions of the malware. In terms of the def-
constants that denote their type. For example, we us#itions presented in Sectidn 4.1, behavior generaliza-
a different constant for each file and registry type. Setion produces high-level behaviors with arguments con-
guences of system calls that operate sequentially on thetructed to accurately represent the resources modified
same resource are replaced with a singlchcall that by observed executions, while generalizing to potential
is semantically identical. Finally, we ignore system callsfuture executions.
whose effects are latddilled, i.e. overwritten or other- Algorithm [2 presentsGeneralize, our procedure for
wise reversed. In this way, our hormalization step pro-generalizing a behavior cluster. Intuitively, generaliza-

Algorithm 1 Cluster (B, B™2*) Algorithm 2 Generalize(C, G, J)

Require: B is a set of high-level behavior traces Require: C is a cluster of behaviors that differ only in argu-
{B',B?...,B™} ment valuesg is a set of generalization rulesis the density
B™** is the high-level behavior trace containing the maxi- threshold.
mum number of high-level behaviors Result: A generalized high-level behavior.

Result: A set of clusters of high-level behaviors of {Loop through all arguments for behaviors in cluster C'}

{B',B%,...,B™}
C—o
for b7 € B™** do
add new clustefb; } to C
end for
for all B* € B/B™** do
{Traces are enumerated in the order of collection.}
forall b € B* do
{Behaviors are enumerated in execution order.}
forall Cx € Cdo
if isomorphic(b’, bx) whereby, is a behavior irCy
then
Cr — Cr U {b;}
end if
end for
if b} is not in any clustethen
add new clustefd; } to C
end if
end for
end for
return (C)

for i =0 to |args(Co)| do
A — o
{Gather all values for current argument}
for ¢ in Cdo
A; — A; U args;(c)
end for
{Generate PFSA that captures argument values}
(V, E) «— PFsA(4;)
{Find dense regions in the PFSA}
for (ni,n2) iIn V.xV —{(n,n) |ne€V}do

if —idom(e1,e2) or —ipdom(na,ny) or
numpaths(ni,nz) < 6 then

continue
end if

for » in Gdo
E' — r(paths(ni,n2))
E « (E — paths(ni,n2)) U E’
end for
end for
{Build regular expression for the current arguments}
G; « regexp(F)

end for
{Return new behavior with type matching C, and gen-
t eralized reg. exp. arguments}

tion is performed on each high-level behavior argumen
P g g return naméCo)(Go, ..., G), 0 < n < |args(Co)|

individually, and the individual results are eventually
combined to produce the generalized behavior. Because
each cluster member represents the same high-level be-
havior, and therefore has the same number of argumenis,, which is the immediate postdominator of. Fur-
as the others, we are assured that all of the relevant infothermore, we require that the number of paths between
mation is included in the generalization. Furthermore,n; andn, be at least. The actual value of is es-
because all arguments for the behaviors that we are intetimated empirically. This information is represented in
ested in have straightforward canonical representationsigorithm[2 with the relationsdom g and ipdom g, as
as strings, the problem of generalizing each argumenivell as the functiomumpaths ;. When a suitable single-
can be reduced to the problem of generalizing sets oéntry single-exit region is found, each rulegris applied
strings. Generalize proceeds in this vein, iterating over in an attempt to generalize it. The generalization rules
each argument for the behaviors in a given clusteAf- that we use have been chosen on the basis of experience
ter collecting each string for a given argumentin asgt and consider information such as the number of paths in
a probabilistic finite-state automaton (PSFA) that acceptshe region, the probabilities associated with the paths, the
all of the strings inA; is constructed using tr@mulated lengths of the paths, and the characters composing the
beam annealinglgorithm [17]. By merging states that strings associated with each path. If a rule is able to gen-
are probabilistically very similar, the resulting automatoneralize the region, then it returns a smaller set of edges
accepts a superset df;, thus resulting an initial gener- that are used to replace the original region. Otherwise,
alization. the rule returns the original region, and the next rule is
After building the PFSA, certain regions of the state applied. After all rules inG have been applied, a reg-
transition diagram are examined for reduction using a setilar expression is built from the resulting PFSA, which
G of generalization ruleswhich are templates for gen- is eventually used as an argument in the final general-
erating regular expressions that overapproximate highized behavior. The final behavior is represented in Algo-
level behavior arguments. We refer tosmgle-entry rithm[g by name(Co)(Go, - .., G,). Here,name(Cy)
single-exit regioras one whose entry is composed of areturns the behavior name of the high-level behadigr
noden; that is the immediate dominator of the exit node which is used to build the final generalized behavior from

10

1 DropAndAutostart("c: \windows \...po agp.exe", data ,"..Windows \CurrentVersion \Run"," vqg","po agp.exe")
2 DropAndAutostart(“c: \windows \...po bxz.exe", data ,"..Windows \CurrentVersion \Run"," vg","po bxz.exe")
3 DropAndAutostart(“c: \windows \...po cra.exe", data ,"..Windows \CurrentVersion \Run"," gv","po cra.exe")
4 DropAndAutostart(“c: \windows \...po mfg.exe", data ,"..Windows \CurrentVersion \Run"," vg","po mfq.exe")
5 DropAndAutostart("c: \windows \...po mmp.exe", data ,"..Windows \CurrentVersion \Run"," gv","po mmp.exe")
6 DropAndAutostart("c: \windows \...po pwz.exe", data ,"...Windows \CurrentVersion \Run"" gv","po pwz.exe")
7 DropAndAutostart(“c: \windows \...po uwk.exe", data ,"...Windows \CurrentVersion \Run"" vq"'"po uwk.exe")

Figure 5: Sample cluster grouping seven different occurrences @frtty@AndAutostart behavior manifested by
our sample malware (the corresponding graphs are omitted for conciseness).

the individual argument generalizations. Algorithm 3 Remediate(S, R)

As an illustration of this algorithm, consider the clus- Subss Nvems Sadds Smut) — (Sabss Nvems Sadds Smut) €
ter presented in Figufg 5. We apply the PFSA algorithm g sych thatS has the same operating system versiofi,as
to the first argument to arrive at the minimal automaton for s in S,4s do
shown in Figurg 6. The automaton contains a single- casess:

entry single-exit region with several paths, as highlighted (name, data) : if file name exists, with contents
in the figure, that encodes the variable substring of the matchingdata then removename.
filename. One of the generalization rules that we use ((key, value), data) - if (key, value) exists with
is triggered by the fact that this region dense i.e. it contents matchingata

then remove(key, value).
((file, key, value), (data, regdata)) :
if file exists and is a suffix of some element of
D regaata that also exists in a key matching
(key, value) then removefile and
(key, value).

contains many paths from entry to exit, as well as the
fact that it contains only alphabetic characters. Thus, it
returns a single edge labelfdalpha :]]{3}, whichis a

wildcard sequence that denotes all alphabetic strings of
length three. The generalized PFSA results in the reg-

ular expressionc : \windows\po[[: alpha :]]{3}.exe, ((file, procname), data) :

which is capable of identifying all the names of if procname and(file, data) exist matching
the files that our sample malicious program could file, data, procname and procname is a
touch on the system. After applyinGeneralize to suffix of file then removefile and

all arguments ofDropAndAutostart, we obtain a Kill procname.

generic model of the cluster behavior represented by €nd cases

DropAndAutostart(“c : \windows\po[[: alpha :]]{3} end for
9 « . . 9 for ¢ in I, do
.exe”, data, “..Windows\CurrentVersion\Run”, cases:
“(valqv)”). (file, data) : Remove(file, data) and replace it
with (file, data’) € 5(S)
4.2.4 Generating Concrete Remediation Procedures ((key, value), data) : Remove((key, value), data)
and replace it with
Each generalized high-level behavior must be remediated ((key, value), data) € B(S).

differently. Our approach to generating executable re- end cases

mediation procedures may be understood conceptually end for

in two parts. First, the generalized high-level behaviors

for each cluster are used to construct an approximate in-)] o

fection relationR as discussed in Sectipn #.1. Then, we abstract infection re]a’gon is used to generate a concrete

use a generic procedure that scans the infection relatiot€*ecutable) remediation procedure.

and changes the state of the system based on the contents

of each entry. When constructing the infection relation,Newly-Created Resources: Remediating resources

our procedure uses a model of a clean, bare installatiothat are created by malware is straightforward, because

of the operating system installed on the machine for thehe remediation procedure only needs information re-

first system state component of each tuple. The use ajarding the names and data of newly-created resources

a bare installation enables us to remediate infected syse completely remove the corresponding resources from

tem resources up to the correct service pack installed othe system. Our remediation procedures are capable of

the system, but not personal or application-specific reremoving files and registry keys. To account for the pos-

sources. sibility that the infection could create resources that were
The remainder of this section details the way that spenot observed in a high-level behavior trace during anal-

cific high-level behaviors are translated into entries in theysis, we instead use generalized high-level behaviors in

abstract infection relation, as well as the way that thethe infection relatiorR.

11

Single-entry-single-exit region

Figure 6: A fragment of the minimized automaton constructed to generalize the first argument of the
DropAndAutostart behavior, starting from the occurrences of the argument reported in ﬂgure 5.

For the high-level file creation behavior c:\windows\po[[: alpha :]]{3}.exe, as well as
FileCreation(name, data), we find the resource the registry key(...\CurrentVersion,Run), and will
for name and data and append this pair td 4. remove the resources only if the value of the registry key
Similarly, for the high-level registry creation behavior matches the name of any file that matches the regular
RegistryCreation (key,value, data), we associate expression.
the key/value pair to the corresponding data and add
them as a pair @ada. AS shown in AIgonthnDE_ ' the Infected Resources: Remediating infected resources
remediation procedure processes these entries in the :
: . i : : IS more challenging than newly-created resources. In
infection relationR by checking for the existence of the o . ,
. . eneral, it is not possible to know the contents of a file
resource names on the system and removing them if theg . . L ;
L o efore infection takes place, so it is not possible to re-
exist with the contents specified 13y,
- store their contents to a clean state. The exception to this
Remediating the DropAndAutostart and

. . . fact is with operating system files, which are common
DropAndExecute behaviors is more complicated, o
. . . all systems and can thus be known to the remediation
as doing so involves multiple resources that are relate

in a constrained manner. To handle a high-level behavioprocedurga prior. . .
of the form: A naive approach to remediating high-level

FileInfection(name, region, data) behaviors
DropAndAutostart(file, data, key, value, regdata) would be to replace the entire file with the corresponding
file in the bare operating system. However, uninfected
we group the resource naméite, key, valugogether as regions of data may be removed by this technique, which
a compound resource name for a new elemerf i, could result in the loss of important system data, or
and groupdataandregdatatogether for the correspond- leave the system in an inconsistent state. To avoid this
ing data component. The remediation procedure acts onircumstance, high-level behavior traces keep track of
such an entry by scanning system resources for namasinfected regionsegionsin addition to file namédfile
that match the file name and registry key/value pairs. If aand infected datdata We update thé,,,,;, component
match is found, the corresponding resources are removeaf R to account for aFileInfection behavior only
only if the concrete filename is a suffix of the concreteif there is an actual file in the clean operating system
registry data and the concrete data matches the abstragtiate whose name matches e In this caseS,,.; is
data. updated with the contents dife in the bare operating
For example, when the procedure encounters the gersystem state, modified by preserving the portions listed
eralizedDropAndAutostart from Figure®, it willaug- in regionsand overwriting the rest witdata As indi-

mentS, 44 With the following resource: cated in Algorithn B, when the remediation procedure
findsfile, it replaces the infected regions with a pristine
(c : \windows\po[[: alpha :]|{3}\.exe, copy from the bare operating system.
(...\CurrentVersion,Run), Similarly, when a high-level
(data, po[[: alpha :]]{3}\.exe)) RegistryInfection((key, value), data) behavior
is encountered, and it is determined that a counterpart of
The remediation procedure will then (key, value) exists in the bare operating systeffy,,; is

search the system for a file that matchesmodified by adding the key/value pair together with the

12

modified data to the list of infected resources. As with 2. Infect twenty-five test environments, all of them dis-
infected files, Algorithn{ B remediates these resources tinct from those used to collect traces, with the sam-

by locating a pristine copy ofkey, value) in the bare ple.
operating system and replacing the infected resource L .
wri)th it g sy P 9 3. Execute the generated remediation procedure in

each test environment.

4. Compare the remediated state to the original (clean)

Deleted Resources: Currently, most malware is writ- state. Tally the false positives and false negatives.

ten with the intent of leveraging infected systems to per- _
petrate profitable, albeit illicit, activities. Therefore, it Although we do not attempt to extract all possible exe-

is very rare to see malware removing system resource§ution paths from the malware, this strategy allows us to
making activities. For this reason, our remediation pro-OUS Settings.

cedures do not handle deleted resources.

5.2 False Negatives

5 Evaluation Figure [T compares the false negative rate of our
automatically-generated remediation procedures with

We applied our remediation procedure generation algozhe three top-rated commercial malware detectors eval-

rithm to over two hundred malware samples collected inuated in [15]: Nod32 Anti-Virus 3.0, Panda Anti-Virus

the wild. We evaluated the quality of the generated pro—9'0'5' and Kaspersky Anti-Virus 2009. The graph depicts

cedures with respect to two metrics: false positives andhe da_lvterzge nutrrr:ber ?f mallcllous resourcethhat were re-
false negatives. A false positive occurs when a resourc d'e' dla de' ':)VTIZ € ent|re m_avyafr.? corpus. . eskources ?jre
is mistakenly identified as being part of a malware in- vided into three categonies: Tiles, registry keys, an

fection and subsequently remediated. A false negativ@rocesses' Each of these classes is further divided into

occurs when a resource that was actually involved in ano subcategories: primary and ancillary. Primary re-

infection is not identified and left untouched by the re- sources are composed of gxecutable files, registry keys
mediation procedure. The results of our evaluation tes{hat activate process creation, and processes that arise

tify to the effectiveness of our technique: we observed Jrom files dropped or infected by the malware sample_.
low false negative rate, with more than 98% of the ma_Rougth, we argue that all other resources are not as crit-

licious resources successfully remediated, and only ongaI to the security of the system, and are thus considered
false positive was encountered. Finally, we compare ou

F\ncillary.
results to the remediation capabilities of the three com- For the majority of these categories and subcategories,

mercial products that performed best in previous experi-Our rgmedlz_atlon procedures are more complete than com-
ments [15]. mercial anti-malware prod_ucts. For example, our proce-
il dures were able to remediate more than 99% of the pri-
mary file resources, whereas the best commercial prod-
5.1 Experimental Setup uct we tested reached only 82% in this subcategory. Sim-
ilarly, our procedures remediated 99% of primary reg-
Our experiments were performed over a corpus of 200stry activities, while commercial products did not ex-
malicious programs, obtained through our own honey-ceed 86%. Furthermore, while ancillary objects are of-
pot, and a web crawler that crawls known malicious do-ten ignored by commercial remediation procedures, our
mains for executable files. Several traces for each sanprocedures remediated 95% of ancilliary files and 98%
ple were collected by executing it in multiple distinct en- of ancilliary registry activities. The portion of file and
vironments. To extract a wide range of behaviors fromregistry resources that were not remediated by our proce-
each sample, we modified the environments along a vadures correspond to behaviors that were never observed
riety of dimensions, including locale, timezone, and thewhile collecting traces. This illustrates the primary limi-
set of installed applications. Specifically, for each sam-tation of our dynamic analysis-based approach and high-
ple we performed the following steps: lights a clear avenue for improvement in future work. Fi-
nally, our procedures remediated 100% of primary pro-
1. Execute the sample three times in five different en-cess resources. However, the performance on ancillary
vironments, collecting a system call trace for eachprocesses is significantly lower. This is a result of the fact
execution. Apply the algorithm described in Sec- that our processes do not have access to enough informa-
tion[4.2 to generate a remediation procedure fromtion to discern a benign process from a process spawned
the collected data. by the malware using a pre-existing benign file.

13

100 T T T T T T
80 |] .
=] .
g
¢ 60 4
o
(%]
9
>
g 40 T
5]
=S
20 -
0 S L. B . -) e
Files Files Reg. keys Reg. keys Processes Processes
(primary) (ancillary) (primary) (ancillary) (primary) (ancillary)
= Our approach /3 Nod32 Panda mmm Kaspersky

Figure 7: Comparison of the completeness of our automatically generated remediation procedures with the complete-
ness of the procedures employed in three top-rated commercial malware detectors.

5.3 False Positives ware analysis, and we carefully tested all models to en-

] N sure that they cannot be evaded. However, since we can-
To quantify false positives, we compared the set of rey ot hrove that these models are perfect, we must take into
sources affected by each malware sample in each test €Qzcount the possibility that attackers could find new ways
vironment with the set of resources our procedures reg, perform some high-level malicious activities without
mediated in each test environment. A|_1y remediated "eheing detected. Moreover, in our proof-of-concept im-
source not affected by the corresponding malware sampjementation, multiple execution traces are obtained by
ple in at least one trace is considered a false pos't'veexecuting the same malware in several different operat-
We found that only one of our procedures produced any,q system configurations. If attackers introduced dan-
false positives. The cause of this false positive, not Suryeroys behaviors to their malicious programs that are not
prisingly, was a high-level behavior argument specifiedyjggered in our monitoring environment, then the result-
by a very general regular expression. This implies thafng nrocedure would not be able to remediate such be-
the nondeterminism demonstrated by the correspondingayiors. Clearly, one area for future work is in expanding
malware sample was too complex to be easily describeghe coverage of the dynamic behavioral analysis. While
by a regular language. Thus, one area for future workr annroach covers some of the potential behavior of the
is utilizing more expressive Ianguagg classes, such aSample, more sophisticated techniques [12, 21] can be
context-free grammars, for generalizing argument valypjieq 1o increase the likelihood that all relevant paths
ues. through the malware are explored.

_) The high-level behaviors observed in multiple execu-
6 Discussion tion traces are clustered to identify the instances of the
same behavior. If the clusters we generate did not in-
We are aware of some limitations of our system. Some otlude all the instances of the same behavior, or if they
these limitations could be exploited by attackers to causéncluded instances of different behaviors, then the reme-
the system to produce remediation procedures that are @fiation procedures constructed by generalizing the be-
limited value. In this section, we discuss these limita-haviors associated to each cluster would be too specific
tions and present some solutions that we will investigateor too generic. An attacker could write malicious pro-
in the future to address the limitations. grams that manifest certain behaviors to break the clus-
We constructed the models that we use to detect hightering. Similarly, the regular expressions used by our re-
level behaviors by leveraging years of experience in malmediation procedures to identify affected resources are

14

generalized heuristically. Attackers could develop mali-References

cious programs that affect resources in a way that induces

us to perform very aggressive generalization (e.g. create[1] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A
files with random names anywhere in the file system) and tool for analyzing malware. 145th European Insti-
thus to generate remediation procedures that remove be- tute for Computer Antivirus Research (EICAR) An-
nign files. We plan to address these problems in the fu- nual ConferenceHamburg, Germany, Apr. 2006.
ture. One approach is to introduce a feedback loop while

clustering behaviors and generating regular expressiong2] U. Bayer, P. Milani, C. Hlauschek, C. Kruegel, and
to validate the quality of the results. This feedback loop E. Kirda. Scalable, behavior-based malware clus-
would repeat the process until no further progress canbe tering. In 16th Annual Network and Distributed
made. Finally, we assert that it is not possible to cause System Security Symposium (NDZ8D9.

our algorithm to generate a procedure that modifies ex-

isting files in a harmful way. This follows from the fact [3] F. Bellard. QEMU, a fast and portable dynamic
that system files are only ever restored to their original translator. http://fabrice.bellard.

state by the procedure, not modified. free.fr/gemu/

We currently generate a remediation procedure for
each malware sample we analyze. We plan to extendl4
our system to generate remediation procedures that cover
more than one malware sample. For example, it would be
useful to generate remediation procedures that are capa-
ble of operating on all samples for a given malware fam-
ily. Because the generated procedures will likely have
to account for a much higher degree of nondeterminism
than those that target only a single sample, additional [?] M. Costa, M. Castro, L. Zhou, L. Zhang, and
care must be taken to ensure that the high-level behav- M- Peinado. Bouncer: Securing software by block-

iors models are not too general, thus resulting in false N9 bad input. Ir21st ACM Symposium on Operat-
positives. ing Systems Principles (SOSRPO7.

] M. Christodorescu, C. Kruegel, and S. Jha. Min-
ing specifications of malicious behavior. Bth
Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ES-
EC/FSE) Dubrovnik, Croatia, 2007.

[6] P. Foggia. The vflib graph matching library, ver-
sion 2.0. http://amalfi.dis.unina.it/
graph/db/vtlib-2.0/

7 Conclusion . :

[7]1 F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su.

Back to the future: A framework for automatic mal-
In this paper, we have presented a technique for auto- ~ ware removal and system repair. 22nd Annual
matically generating malware remediation procedures. ~ Computer Security Applications Conference (AC-
Given a malware binary, our system produces executable ~ SAC) 2006.
code that removes the harmful effects of executing that
malware on a system. We use dynamic analysiskesd [8] C. Kolbitsch, P. M. Comparetti, C. Kruegel,

havior generalizationo account for the difficulties posed E. Kirda, X. Zhou, and X. Wang. Effective and effi-
by real malware, thus allowing our procedures to effec- cient malware detection at the end hostUBENIX
tively remediate many possible executions of the mal- Security Symposiur2009.

ware without witnessing the actual infection take place.

This contribution represents a major break with previ- [9] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and
ous automatic remediation techniques, which required B. Chavez. Hamsa: Fast signature generation for
detailed information about the particular infection being zero-day polymorphic worms with provable attack
targeted. We implemented our technique and evaluated resilience. INEEE Symposium on Security and Pri-
its effectiveness on more than 200 malware binaries. The vacy Oakland, California, 2006.

performance of our prototype is quite good: on average,

98% of the harmful effects are remediated, and we en}10] Z. Liang, V. N. Venkatakrishnan, and R. Sekar. Iso-

countered only a single false positive. In the future, we lated program execution: An application transpar-
plan to build on this work by extending it to work on ent approach for executing untrusted programs. In
entire families, as well as exploring more precise tech- 19th Annual Computer Security Applications Con-
nigues for generalizing observed malware behaviors. ference (ACSACR003.

15

http://fabrice.bellard.free.fr/qemu/
http://fabrice.bellard.free.fr/qemu/
http://amalfi.dis.unina.it/graph/db/vflib-2.0/
http://amalfi.dis.unina.it/graph/db/vflib-2.0/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

L. Martignoni, E. Stinson, M. Fredrikson, S. Jha,
and J. C. Mitchell. A layered architecture for de-
tecting malicious behaviors. limternational Sym-
posium on Recent Advances in Intrusion Detection
(RAID), Sept. 2008.

A. Moser, C. Kruegel, and E. Kirda. Exploring mul-
tiple execution paths for malware analysisIHEEE
Symposium on Security and Priva@akland, Cal-
ifornia, 2007.

A. Moser, C. Kruegel, and E. Kirda. Limits of static
analysis for malware detection. B3rd Annual
Computer Security Applications Conference (AC-
SAC) 2007.

J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically generating signatures for polymor-
phic worms. InIEEE Symposium on Security and
Privacy, Oakland, California, 2005.

E. Passerini, R. Paleari, and L. Martignoni. How
good are malware detectors at remediating infected
systems? Ir6th Conference on Detection of In-
trusions and Malware & Vulnerability Assessment
(DIMVA), Como, ltaly, July 2009.

M. D. Preda, M. Christodorescu, S. Jha, and S. De-
bray. A semantics-based approach to malware de-
tection. ACM Transactions on Programming Lan-
guages and Systen¥0(5):25.1-25.54, Aug. 2008.

A. Raman, P. Andreae, and J. Patrick. A beam
search algorithm for PFSA inferendeattern Anal-
ysis and Applicationsl(2):121-129, 1998.

K. Rieck, T. Holz, C. Willems, P. Dssel, and
P. Laskov. Learning and classification of malware
behavior. In5th Conference on Detection of In-
trusions and Malware & Vulnerability Assessment
(DIMVA), 2008.

W. Sun, Z. Liang, R. Sekar, and V. N. Venkatakrish-
nan. One-way isolation: An effective approach for
realizing safe execution environments12th Sym-
posium on Network and Distributed Systems Secu-
rity (NDSS) 2005.

V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha.
An architecture for generating semantics-aware sig-
natures. In4th USENIX Security SymposiuBal-
timore, MD, 2005.

H. Yin, D. Song, M. Egele, E. Kirda, and
C. Kruegel. Panorama: Capturing system-wide in-
formation flow for malware detection and analysis.
In 14th ACM Conference on Computer and Com-
munications Security (CCS)lexandria, VA, 2007.

16

	Introduction
	Related Work
	Overview
	Motivation
	Architecture Overview

	Generating Remediation Procedures
	Problem Description
	System Details
	High-Level Behavior Extraction
	Behavior Clustering
	Behavior Generalization
	Generating Concrete Remediation Procedures

	Evaluation
	Experimental Setup
	False Negatives
	False Positives

	Discussion
	Conclusion

