
A hybrid analysis framework for detecting web application
vulnerabilities∗

Mattia Monga, Roberto Paleari, Emanuele Passerini
Università degli Studi di Milano

Milano, Italy
{monga,roberto,ema}@security.dico.unimi.it

Abstract

Increasingly, web applications handle sensitive data
and interface with critical back-end components, but
are often written by poorly experienced programmers
with low security skills. The majority of vulnerabilities
that affect web applications can be ascribed to the lack
of proper validation of user’s input, before it is used
as argument of an output function. Several program
analysis techniques were proposed to automatically spot
these vulnerabilities. One particularly effective is dy-
namic taint analysis. Unfortunately, this approach in-
troduces a significant run-time penalty.

In this paper, we present a hybrid analysis frame-
work that blends together the strengths of static and
dynamic approaches for the detection of vulnerabilities
in web applications: a static analysis, performed just
once, is used to reduce the run-time overhead of the
dynamic monitoring phase.

We designed and implemented a tool, called Phan,
that is able to statically analyze PHP bytecode search-
ing for dangerous code statements; then, only these
statements are monitored during the dynamic analysis
phase.

1 Introduction

A web application is an application developed by
adopting the web paradigm. Computation is per-
formed via a client-server model, where the client is
a web browser, the server is a web server augmented
by some extension modules which enable the execution
of server side code, and the communication between
client and server relies on the HTTP protocol.

∗This research has been partially funded by the Euro-
pean Commission, Programme IDEAS-ERC, Project 227977-
SMScom.

Today web applications are employed in a wide va-
riety of different contexts. Common examples of web
applications include web mails, forums, blogs, social
networking websites, online stores, and so on. Unfor-
tunately, the insecurity of these applications is a well-
known problem. According to a recent analysis [17],
roughly 60% of the software vulnerabilities annually
reported are specific to web applications. Moreover,
the majority of these vulnerabilities can be ascribed
to the same root cause: the lack of proper validation
of user’s input. The most common web application
attacks that exploit such vulnerabilities are cross-site
scripting (XSS [4]) and SQL injection (SQLI [8]). In
the first case, an attacker supplies an input that con-
tains malicious Javascript code, that is later sent to
an unaware client without a proper sanitization. Be-
cause of an implicit trust relationship between servers
and clients, the malicious Javascript code will be inter-
preted by the client’s browser, thus leading to possible
privacy violations (e.g., cookies stealing). Similarly, in
a SQLI attack user-supplied data is used for building
a SQL query string that is sent to a DBMS, without
being properly validated against the presence of special
characters (e.g., quotes or other SQL tokens) that could
alter the semantics of the query, as it was intended by
the programmer.

In both these examples, the root cause of the vul-
nerability is that the application programmer did not
correctly validate the user-supplied input. To pre-
vent these security problems, web languages offer na-
tive sanitization primitives that a developer can use to
validate input data. For example, PHP provides the
mysql real escape string() function that can be used
to escape SQL special characters inserted in a given
string. However, in order to avoid introducing secu-
rity vulnerabilities in their applications, programmers
must be aware of these security problems and prop-
erly sanitize each user-supplied input before any pos-
sible use as the argument of an output function. Un-

fortunately, nowadays web applications are often writ-
ten by developers with low programming and security
skills, that sometimes ignore programming good prac-
tice. Moreover, most applications are produced by as-
sembling scripts coming from different developers, and
it is not always feasible to review all the code base. As
web applications are getting more and more complex,
it is becoming quite difficult to be able to assert any
elementary property about their code.

Several solutions have been proposed that aim at
finding automatically security vulnerabilities in web
applications [5]. Existing solutions can typically be
classified into static and dynamic approaches. Static
analyzers [12, 11, 20, 10] consider the source code with-
out actually executing it; their strength is that they can
reason over all possible program paths, but they are
often overly conservative, since they normally reports
properties weaker than the ones that actually hold in
a specific execution. On the other side, dynamic ap-
proaches [16, 7] focus on an actual execution of the tar-
get application; they consider only a limited number of
program paths (i.e., those that have been covered in
the observed executions), but they can provide more
accurate results. Unfortunately, dynamic tools intro-
duce a significant run-time overhead in the application
being analyzed.

In this paper we present a system for analyzing web
applications based on a hybrid approach. Our solu-
tion blends together the strengths of static and dy-
namic approaches [6]. It has been implemented in
an experimental prototype code named Phan (PHP
Hybrid Analyzer). Phan currently targets PHP appli-
cations, but can be easily extended to other environ-
ments. First, Phan statically analyzes the target appli-
cation, searching for dangerous statements; afterwards,
only those statements that have been found to be dan-
gerous will be monitored dynamically, thus reducing
the run-time overhead. It is worth noting that Phan
does not work on PHP source code, but directly at the
bytecode level. In fact, PHP applications are first com-
piled into a low-level and poorly documented bytecode
language that is then interpreted by Zend, the PHP un-
derlying virtual machine. Even if dynamic approaches
targeting Zend bytecode already exist [16, 7, 13], this
is, to the best of our knowledge, the first time static
techniques are directly applied to Zend bytecode.

The contributions of this paper can be summarized
as follows:

• we present a hybrid program analysis framework
for detecting input-driven security vulnerabilities
in web applications. Our solution relies on a static
preprocessing technique to reduce the run-time
overhead of the subsequent dynamic analyses.

• We describe how we instrumented Zend in order to
implement a prototype of Phan, our experimental
tool that performs static and dynamic analysis of
PHP applications, at the Zend bytecode level.

This paper is structured as follows. In Section 2
we motivate our work and we give a high-level view
of a hybrid analysis framework for web applications.
Section 3 describes the architecture of Phan, our hy-
brid analyzer for PHP applications. Section 4 presents
some technical details of the experimental prototype
we built. In Section 5 we discuss the limitations of our
analysis framework, we present some preliminary ex-
perimental results and we outline some directions for
the future. Finally, in Section 6 we discuss some related
work, while Section 7 briefly concludes this paper.

2 Hybrid analysis of web applications

The goal of our approach is to monitor the execution
of a given web application and to intercept injection
attacks, i.e., those attacks that exploit the improper
validation of user-supplied input data, before it is used
as argument of an output function.

Our approach is made up of two distinct logic steps:
(i) a static analysis of the application, that identifies
dangerous statements and (ii) run-time monitoring of
the identified statements.

Initially, we generate a static model of the whole
application. The application code is translated into an
intermediate form. The rationale behind the choice of
our intermediate representation language was to reduce
the number of instruction and expression classes, in or-
der to ease the subsequent analyses, while still being
able to precisely capture the semantics of the applica-
tion code.

Then, for each program function, we build its control
flow graph (CFG) [2]. Such CFGs are connected to-
gether, thus obtaining an interprocedural CFG (iCFG),
that is analyzed to individuate all possible code paths
from a user input source (e.g., $ GET, $ POST and
$ COOKIE arrays in PHP) to a sensitive sink. By
sensitive sink we mean any function that could lead
to security problems when executed over unsanitized
user-supplied data (e.g., mysql query() and echo(),
in PHP).

Finally, from all statements appearing in these
paths, we extract only those that might affect the in-
put arguments of a sensitive sink. We do this by calcu-
lating, for each sensitive sink, the backward slice [19]
over its input arguments. All these statements are
marked as “dangerous”. During the subsequent dy-
namic phase, only dangerous statements need to be
monitored.

The resulting static model is overly conservative,
mainly due to limited support for aliasing and class
constructs; currently, we address these limitations by
extending the number of program statements to be
monitored dynamically. In other words, we try to pre-
serve soundness at the cost of greater run-time over-
head.

Dangerous statements will be used to perform an ef-
ficient dynamic taint analysis, since most of the state-
ments have been filtered out by the static preprocess-
ing. Data that originate or derive from an untrusted
source are marked as tainted : we start by marking
input data as tainted, and then we dynamically keep
track of how the tainted attribute propagates to other
data. Initially, only a minimal set of program vari-
ables are considered to be tainted (e.g., all PHP global
arrays that contain user-supplied data). As the execu-
tion goes on, other program variables become tainted.
When we detect that tainted data containing malicious
characters has reached a sensitive sink, we can choose
either to block the execution or to sanitize tainted data
before allowing the application to continue.

It is worth pointing out that tainted values can-
not be sanitized as soon as they are read from in-
put sources; in fact, at this point, we are not sure
whether untrusted variables will eventually be sani-
tized by the application, nor if they will ever reach a
sensitive sink. For these reasons, the preemptive san-
itization of tainted variables could alter the original
semantics of the target application.

On-line monitoring can be very effective, but, in
order to minimize the run-time penalty, it should be
constrained to a limited number of dangerous state-
ments. However, the identification of these code paths
requires a priori knowledge of the structure of the pro-
gram, that, without the initial off-line phase, would be
almost incomplete.

In Figure 1 we report a simple PHP script1 that
checks whether the user has supplied a product ID as
a GET parameter of the HTTP request (line 7); in
this case, a SQL query is built to extract the informa-
tion about the specified product from the underlying
MySQL database (line 2). This script contains a SQLI
vulnerability: since the user input is not properly san-
itized, an attacker could manipulate the query submit-
ted to the DBMS (line 4). This example will be used
in the following to illustrate our approach.

1Phan deals with Zend bytecode, however, for the sake of clar-
ity, the example is shown in its source code form.

1 function get product($id) {
2 $q = ”SELECT ... WHERE id=$id”;
3 mysql connect(...);
4 $res = mysql query($q);
5 }
6

7 if(isset($ GET[’product id’])) {
8 $a = $ GET[’product id’];
9 get product($a);

10 } else {
11 $msg = ’Invalid request’;
12 echo $msg;
13 }

Figure 1. Sample PHP code fragment with a
SQLI vulnerability.

3 Phan: a hybrid analyzer for PHP ap-
plications

In this section we describe how the high-level solu-
tion introduced in Section 2 can be applied to PHP
code. To this end, we present Phan, our hybrid anal-
ysis framework for PHP applications. Phan does not
require any modification to the source code of the tar-
get application, nor any interaction with web applica-
tion developers. All the static and dynamic analyses
performed by Phan are carried out directly on Zend
bytecode. We adopted this strategy in order to avoid
the intricacies of parsing PHP: the bytecode has ∼ 150
opcodes, and it is pretty stable among PHP releases.

Phan is organized into the two following main com-
ponents:

1. an off-line analysis engine, that translates Zend
bytecode into an intermediate form, constructs
a control flow graph for each program function,
merges together the CFGs into a single interpro-
cedural CFG, and finally identifies dangerous pro-
gram statements;

2. an on-line monitoring engine, that performs dy-
namic taint tracking on Zend bytecode, and reacts
properly when tainted user-supplied data reaches
a sensitive sink.

Each of these components is described into more de-
tails in the following sections.

3.1 Off-line analysis

The goal of this phase is to provide a conservative
view of the whole application, that will be used to drive

the on-line analysis to a limited number of program
statements. It is worth pointing out that the off-line
analysis has to be done just once for each application
script, and has not to be repeated every time a user
requires the execution of a PHP script. In this section,
we describe the steps involved in the off-line analysis
of a single application script. The same steps have to
be carried out for each script in the target application.

Translation into intermediate representation.
First of all we had to instrument Zend, in order in-
tercept the compilation of PHP scripts. In this way,
we are able to obtain a bytecode representation of
each application script. To ease the analysis, byte-
code instructions are translated into a simple interme-
diate representation (IR). Our IR resembles a RISC-
like assembly language, including just 5 instruction
types (Assignment, Call, Ret, Jump and Nop) and
4 expression types (Constant, Variable, Array, and
CompoundExpression; the last one is used to model
unary, binary and ternary expressions). For each inter-
mediate instruction, we also compute the set of used
and defined variables [1]. The translation of Zend byte-
code into IR language has required a significant en-
gineering effort: each opcode supported by the Zend
virtual machine has to be precisely modeled using our
RISC-like language, in order to capture the exact se-
mantics of the application being analyzed. If an ap-
plication script includes additional modules, each of
them is recursively compiled and translated into IR
language. In this way, we obtain a complete and self-
contained (except for PHP native functions) view of
the PHP script.

The example in Figure 1, when compiled by Zend,
includes 24 opcodes, and is then translated into 33 in-
termediate instructions.

CFG construction. We briefly recall that a control
flow graph (CFG) is a directed graph C = (B, E),
where B is a set of nodes and E ⊆ B × B is a set
of edges [2]. In our context, CFG nodes represent basic
blocks, i.e., sequences of intermediate instructions with
a single entry point and a single exit point. Each graph
edge (bi, bj) ∈ B indicates that the execution can flow
from basic block bi to bj ; we say that bj is a successor
of bi, and bi is a predecessor of bj .

Let S = {P1, P2, . . . , Pn} be a PHP application
script, where each Pi is a program procedure, and P1

is the “main” procedure of S (i.e., P1 is the first code
sequence that gets executed when S is invoked). We
build the CFG of each procedure Pi ∈ S using stan-
dard techniques [1]. We inspect each CFG searching
for indirect control transfer instructions. Indirect con-

trol transfers are handled using constraint propagation
and reaching definition analysis [14]. We have now a
set of CFGs C = {CP1 , CP2 , . . . , CPn

}, where CPi
is the

control flow graph for program procedure Pi. Then, in
order to generate an interprocedural CFG (iCFG) of
S, we combine together the CFGs in C in the following
way. For each instruction i ∈ S, if i is a call to a user-
defined function Pi, let bi be the basic block i belongs
to, and let bj be the successor of bi; then, we remove
from the iCFG the control flow edge (bi, bj) and we
add two edges (bi, bentry), (bexit, bj), where bentry and
bexit are the entry and exit points of CPi

, respectively.
Similarly, if i is an inclusion statement (i.e., include(),
include once(), require(), or require once()) that
includes the PHP script S′, then we replace the control
flow edge (bi, bj) with two edges (bi, b

′
entry), (b′exit, bj),

where b′entry is the entry point of CP ′
1

and b′exit is its
exit point.

if(isset($_GET['product_id']))

$a = $_GET['product_id'];
get_product($a);

true

$msg = 'Invalid request';
echo $msg;

false

$q = "SELECT ... WHERE id=$id";
mysql_connect(...);

exit()

mysql_query($q);

Figure 2. Interprocedural control flow graph
for the PHP code fragment in Figure 1.

In Figure 2 we show the interprocedural CFG of the
example described in Figure 1. To build the iCFG, we
merged together the CFG of the “main” procedure with
the CFG of get product(): the basic block containing
the function call to get product() is connected with the
entry point of the called procedure.

Identification of dangerous statements. The off-
line analysis terminates with the identification of dan-
gerous code statements. We analyze the iCFG and
we identify all input sources and sensitive sinks. In-
put sources correspond to those PHP superglobal vari-
ables2 that allow an application developer to read user-
supplied data (e.g., $ GET, $ POST, $ COOKIE and
$ REQUEST). In order to prevent second-order injec-
tion attacks, we should also consider the output argu-
ments of functions that read data from a database or
the filesystem as sensitive data sources. However, not
all data coming from these sources was originally sup-
plied by the user. For this reason, we excluded this
feature from our current implementation, as we have
not investigated yet how to handle the false positives
that could arise from this design choice.

Sensitive sinks correspond to those functions that
might send malicious data back to the user (e.g.,
echo() and print()) or to the underlying DBMS (e.g.,
mysql query()). Through the application of standard
data-flow analyses on the iCFG, we are able to ignore
those sink function calls that are guaranteed to receive
as input only constant arguments. Then, we use a
graph traversal algorithm to identify all possible code
paths from an input source to a sensitive sink. Danger-
ous statements are identified by extracting from these
paths those statements that might affect an input argu-
ment of a sensitive sink. Let i denote a sensitive sink,
and let W be the set of program variables that repre-
sent the input arguments of i. We identify dangerous
statements by computing over the iCFG the backward
slice for the slicing criterion (i, W). We first compute
the set H =

⋃
w∈W srd(w, i), where srd(w, i) repre-

sents the static reaching definitions for variable w at
program point i. Then, as described in [9], we can re-
duce our problem to the computation of the set L of
program statements that are reachable in the data de-
pendence graph of the analyzed program, starting from
a statement in H. Dangerous statements are all those
statements included in L that also appear in a code
path that connects an input source with a sensitive
sink.

In the example reported in Figure 1 the only in-
put source is represented by the $ GET array, used at
lines 7 and 8. We have two different sensitive functions:
mysql query() (line 4) and echo() (line 12); however,
constant propagation analysis reveals that the only in-
put argument of echo() is a constant value, thus this
function is not considered as a sentive sink. In Fig-
ure 2 we depict with a solid border the basic blocks
that appear in a code path that connects an input

2PHP superglobals are built-in global variables that are al-
ways available in all scopes.

source with a sensitive sink. The backward slice for
the slicing criterion (4, {$q}) includes only source lines
{8, 9, 2, 4}; these are the dangerous statements whose
corresponding Zend opcodes will be monitored in the
on-line phase.

3.2 On-line analysis

During the on-line analysis phase we perform a dy-
namic taint analysis on Zend bytecode. Initially, only
the input sources are marked as tainted. We modified
the Zend virtual machine to guarantee the correct prop-
agation of taint information during program execution;
only dangerous code statements are dynamically mon-
itored. When a function corresponding to a sensitive
sink is invoked over tainted malicious characters, we
can choose either to abort the execution or to sanitize
the input before allowing the function to continue.

Taint meta-information. We modified the Zend
virtual machine to keep track of the taint meta-
information connected to string variables. Zend asso-
ciates to each variable x a zval structure, updated dur-
ing the execution to reflect the current value of x. We
augmented the zval structure by including taint meta-
information. In particular a list of (index, labels)
pairs is associated to each string variable, where index
denotes a specific string character, while labels is a
bit vector that specifies which taint labels are associ-
ated to that element. Taint labels allow us to precisely
track which input sources affect a tainted program vari-
able. In our architecture, taint meta-information is
protected from unauthorized modifications by the iso-
lation provided by the Zend virtual machine: as long as
an attacker cannot tamper the virtual machine, taint
meta-information cannot be altered.

Propagation of taint meta-information. To en-
sure the correct propagation of taint meta-information,
we had to modify the implementation of string-related
functions inside the Zend virtual machine. We also
instrumented Zend’s internal functions that manipu-
late zval operands, propagating taint information from
source operands to destination.

Phan is able to perform fine-grained tracking of
tainted meta-information: as taint propagation is per-
formed with character-level granularity, we can pre-
cisely handle also program statements that directly ma-
nipulate strings as character arrays.

Detection of injection attacks. When program
execution reaches a sensitive sink, we check whether the
sink function is going to be invoked over tainted input

arguments. To each sink function, we associate an “or-
acle” procedure that determines if a particular tainted
string exploits the vulnerability associated to that spe-
cific sink. In order to detect exploitation attempts, our
current implementation of the oracle functions lever-
ages well-known attack techniques. As an example,
the oracle associated to the mysql query() procedure
performs limited syntactical analysis of the SQL query
that is going to be sent to the database, searching for
tainted characters in unsafe positions (i.e., we search
for tainted characters that could alter the original se-
mantics of the query statement).

4 Implementation details

We have implemented Phan in an experimental pro-
totype that extends PHP 5.2.6. The off-line analysis
module consists of ∼ 6000 lines of Python code and
∼ 1500 lines of C code for interfacing with the Zend
virtual machine. The on-line engine consists of ∼ 1000
lines of C code.

The off-line analyzer has been realized as a PHP
extension module that hooks Zend’s compilation rou-
tine. After Zend has successfully compiled a source file,
the extension sends its bytecode representation to the
Python module, that translates it into the intermedi-
ate language and performs the analyses described in
Section 3.1. The final outcome is the set of dangerous
opcode statements that have to be monitored at run-
time. Our current implementation is still not complete,
as we currently supports 93 out of 150 Zend opcodes.

For performance reasons, the on-line analyzer is en-
tirely written in C. We had to install a limited num-
ber of hooks inside the Zend virtual machine, but the
majority of the taint propagation code is encapsulated
into a self-contained module. By limiting the num-
ber of modifications to Zend’s source code, we tried to
minimize the burden of work required for porting the
on-line engine to different versions of PHP.

5 Discussion

Limitations and future work. The current version
of Phan has some limitations, that we briefly summa-
rize in this paragraph together with possible directions
for future work.

The off-line engine can be significantly improved by
integrating a static taint analysis module [11], that
could further reduce the number of program statements
to be monitored dynamically. Moreover, the current
static analysis engine has limited support for aliasing
and class constructs. In the current implementation,

we address these limitations by dynamically monitor-
ing all those code regions that we are not able to ana-
lyze statically. Finally, Phan assumes the output of a
sanitization routine to be untainted, without even con-
sidering that the sanitization process implemented by
the application developer could be incorrect or incom-
plete. At this end, we could use the approach described
in [3] to verify the correctness of the input sanitization
process.

Preliminary evaluation. Table 1 presents some
preliminary experiments we accomplished over a set
of open-source PHP applications. For each applica-
tion, we report the vulnerability type, a reference to the
vulnerability description, the total number of Zend op-
codes (i.e., Zend bytecode statements) in the monitored
application script, the total number of Zend opcodes
that appear along code paths that connect sources to
sinks, and the number of dangerous opcodes. In the
last column, we report the percentage of dangerous op-
code with respect to path opcodes. As path opcodes
represent a lower bound to the number of opcodes mon-
itored by a fully dynamic approach, this percentage is
a good approximation of the performance gain coming
from a hybrid analysis solution. Moreover, we believe
the improvements sketched out in the previous para-
graph might further decrease the number of dangerous
opcodes, and thus reduce the run-time overhead of the
dynamic phase.

6 Related work

Existing solutions for the automatic detection of se-
curity vulnerabilities in web applications can be clas-
sified into two broad categories: static and dynamic
approaches.

Static approaches. Many different approaches have
been proposed for statically detecting security vulner-
abilities in web applications. Huang et al. proposed
WebSSARI [10], a lattice-based static analysis algo-
rithm for the intra-procedural analysis of PHP pro-
grams. WebSSARI is derived from type systems and
typestate, and it does not track the value of string
variables; this can lead to a high false positives rate.
In [12, 11], Jovanovic et al. present Pixy, a static anal-
ysis tool that performs flow-sensitive, interprocedural
and context-sensitive data-flow analysis on PHP appli-
cations. Pixy is quite efficient and precise, with a low
false positives rate. Finally, in [18] the author propose
a fully automated static technique for detecting SQLI
vulnerabilities in PHP programs. Their approach con-
sists in approximating possible queries that the appli-

Application Type Reference Opcodes Path opcodes Dangerous opcodes
Clean CMS 1.5 SQLI CVE-2008-5290 221 104 56 (53.85%)
Goople CMS 1.8.2 SQLI Bugtraq ID 33135 62 58 17 (29.31%)
MyForum 1.3 SQLI Bugtraq ID 31926 1102 651 141 (21.66%)
Pizzis CMS 1.5.1 SQLI Bugtraq ID 33173 91 38 11 (28.95%)
W2B phpGreetCards XSS Bugtraq ID 33001 1078 814 221 (27.15%)
WordPress XSS CVE-2008-5278 612 26 10 (38.46%)

Table 1. Preliminary evaluation.

cation could submit to the database using context free
grammars; then, they track how input coming from
the user can influence these grammars. However, both
these approaches do not support several features of the
PHP language, most notably classes and dynamically
generated code. In Phan, we address these limitations
with our on-line analysis engine.

Dynamic approaches. Probably, the first approach
that employed dynamic techniques for the taint anal-
ysis of applications is Perl taint-mode [15]: the inter-
preter prevents the use of user-supplied data that has
not been explicitly sanitized.

The works presented in [16, 13] are very close to our
on-line engine. Both solutions protect PHP application
against injection attacks using taint analysis, with an
average run-time overhead of ∼ 10%. Unfortunately,
both these works propose a fully dynamic analysis so-
lution; we believe a hybrid approach like the one dis-
cussed in this paper can further reduce their run-time
overhead. Moreover, the taint propagation performed
by CSSE [16] is too coarse-grained, as it is not able to
propagate taint meta-information when character-level
string operations are performed; Phan offers a more
fine-grained taint tracking solution.

7 Conclusions

In this paper, we presented an approach for de-
tecting injection vulnerabilities in web applications
through hybrid analysis techniques. Our proposal
blends together the strengths of static and dynamic ap-
proaches: the preliminary static analysis phase helps
reducing the run-time overhead connected with dy-
namic monitoring. We described the design and imple-
mentation of Phan, a hybrid analyzer for PHP appli-
cations that works directly at the Zend bytecode level.

The preliminary results indicate that the improve-
ment with respect to a taint analysis entirely dynamic
is significant. Thus, we plan to further increase the ac-
curacy of our analysis in order to evaluate our solution

in extended examples.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers,
Principles, Techniques, and Tools. Addison-Wesley,
1986.

[2] F. E. Allen. Control Flow Analysis. SIGPLAN No-
tices, 5, 1970.

[3] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner: Com-
posing Static and Dynamic Analysis to Validate San-
itization in Web Applications. In Proceedings of the
IEEE Symposium on Security and Privacy, Oakland,
CA, May 2008.

[4] CERT. Advisory CA-2000-02: Malicious HTML Tags
Embedded in Client Web Requests, 2002.

[5] M. Cova, V. Felmetsger, and G. Vigna. Vulnerability
Analysis of Web Applications. In L. Baresi and E. Di
Nitto, editors, Testing and Analysis of Web Services.
Springer, 2007.

[6] M. D. Ernst. Static and Dynamic Analysis: Synergy
and Duality. In WODA 2003: ICSE Workshop on
Dynamic Analysis, Portland, OR, May 9, 2003.

[7] A. Futoransky, E. Gutesman, and A. Waissbein. A
dynamic technique for enhancing the security and pri-
vacy of web applications. In Black Hat USA, 2007.

[8] W. G. Halfond, J. Viegas, and A. Orso. A Classifica-
tion of SQL-Injection Attacks and Countermeasures.
In Proceedings of the IEEE International Symposium
on Secure Software Engineering, Arlington, VA, USA,
March 2006.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
Slicing Using Dependence Graphs. In PLDI ’88: Pro-
ceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation,
New York, NY, USA, 1988. ACM Press.

[10] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo. Securing web application code by
static analysis and runtime protection. In Proceedings
of the 13th international conference on World Wide
Web. ACM, 2004.

[11] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias
analysis for static detection of web application vul-
nerabilities. In Proceedings of the 2006 workshop on

Programming languages and analysis for security, New
York, NY, USA, 2006. ACM.

[12] N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A static
analysis tool for detecting web application vulnerabil-
ities (short paper). In IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2006.

[13] A. Nguyen-tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web applica-
tions using precise tainting. In In 20th IFIP Interna-
tional Information Security Conference, 2005.

[14] F. Nielson, H. R. Nielson, and C. L. Hankin. Principles
of Program Analysis. Springer-Verlag, 1999.

[15] Perl documentation. perlsec. http://perldoc.perl.

org/perlsec.html.
[16] T. Pietraszek and C. V. Berghe. Defending against

injection attacks through context-sensitive string eval-
uation. In In Recent Advances in Intrusion Detection
(RAID), 2005.

[17] Symantec Inc. Symantec internet security threat re-
port: Volume XIII. Technical report, Symantec Inc.,
apr 2008.

[18] G. Wassermann and Z. Su. Sound and precise analysis
of web applications for injection vulnerabilities. In
Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation,
New York, NY, USA, 2007. ACM.

[19] M. Weiser. Program slicing. In ICSE ’81: Proceed-
ings of the 5th International Conference on Software
engineering, Piscataway, NJ, USA, 1981. IEEE Press.

[20] Y. Xie and A. Aiken. Static detection of security vul-
nerabilities in scripting languages. In Proceedings of
the 15th conference on USENIX Security Symposium,
Berkeley, CA, USA, 2006. USENIX Association.

