
Università degli Studi di Milano
Facoltà di Scienze Matematiche, Fisiche e Naturali

A Smart Fuzzer for x86 Executables

Andrea Lanzi, Lorenzo Martignoni, Mattia Monga,
Roberto Paleari

May 19, 2007

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 1 / 16



Motivation and Goal

Motivation

Problem: automatic detection of security vulnerabilities in
computer software

closed source software is widely spread

actual computer programs are rather complex

⇒ need of new tools able to automatically analyze executable code

Goal

Design and development of a new analysis model able to identify
security relevant flaws (i.e. sensitive information overwritten with
input-related data) in stripped executable code

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 2 / 16



Previous Approaches

Exhaustive input testing

The program is executed on every possible input data

Black-box

Input space is virtually unbounded

Fuzzing

Randomly generated input data

Black-box

Incomplete coverage

Other analysis techniques

Symbolic execution, static analysis, . . .

Interesting results, but with scalability problems (exacerbated
at the executable code level)

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 3 / 16



Example

1 void copy(char ∗src)
2 {
3 char buf[5];
4 int i;
5

6 if(strncmp(src, ”abcd”, 4)) {
7 printf(”error\n”);
8 return;
9 }

10

11 for(i=0; src[i]; i++)
12 buf[i] = src[i];
13 }

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 4 / 16



Example

1 void copy(char ∗src)
2 {
3 char buf[5];
4 int i;
5

6 if(strncmp(src, ”abcd”, 4)) {
7 printf(”error\n”);
8 return;
9 }

10

11 for(i=0; src[i]; i++)
12 buf[i] = src[i];
13 }

∼ 10 high-level
instructions

more than
300 assembly
instructions

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 4 / 16



Analysis of Executable Code

Motivations

Many applications are only available as executable code

Many vulnerabilities depend on low-level details (e.g. memory
layout)

Problems

Explosion of code complexity

High-level information must be completely rebuilt

Need to handle a lot of details concerning the underlying
architecture, operating system and compiler

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 5 / 16



Smart Fuzzing
Example

0

1

2

3

4

5

6

7

8

9

10

11

12

b
u
f

fp
retad

d
r

void copy(char *src)

{

char buf[5];

int i;

if(strncmp(src, "abcd", 4)) {

printf("error\n");

return;

}

for(i=0; src[i]; i++)

buf[i] = src[i];

}

PC = ∅
x

y
z

0

1

2

3

4

5

6

7

8

9

10

11

12

s
r
c

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 6 / 16



Smart Fuzzing
Example

0

1

2

3

4

5

6

7

8

9

10

11

12

b
u
f

fp
retad

d
r

void copy(char *src)

{

char buf[5];

int i;

if(strncmp(src, "abcd", 4)) {

printf("error\n");

return;

}

for(i=0; src[i]; i++)

buf[i] = src[i];

}

PC = {strncmp(src,"abcd",4) 6= 0}
x

y
z

0

1

2

3

4

5

6

7

8

9

10

11

12

s
r
c

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 6 / 16



Smart Fuzzing
Example

0

1

2

3

4

5

6

7

8

9

10

11

12

b
u
f

fp
retad

d
r

void copy(char *src)

{

char buf[5];

int i;

if(strncmp(src, "abcd", 4)) {

printf("error\n");

return;

}

for(i=0; src[i]; i++)

buf[i] = src[i];

}

PC = {strncmp(src,"abcd",4) 6= 0}
x

y
z

0

1

2

3

4

5

6

7

8

9

10

11

12

s
r
c

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 6 / 16



Smart Fuzzing
Example

0

1

2

3

4

5

6

7

8

9

10

11

12

b
u
f

fp
retad

d
r

void copy(char *src)

{

char buf[5];

int i;

if(strncmp(src, "abcd", 4)) {

printf("error\n");

return;

}

for(i=0; src[i]; i++)

buf[i] = src[i];

}

PC = ∅
a
b

c
d

0

1

2

3

4

5

6

7

8

9

10

11

12

s
r
c

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 6 / 16



Smart Fuzzing
Example

a
b

c
d

0

1

2

3

4

5

6

7

8

9

10

11

12

b
u
f

fp
retad

d
r

void copy(char *src)

{

char buf[5];

int i;

if(strncmp(src, "abcd", 4)) {

printf("error\n");

return;

}

for(i=0; src[i]; i++)

buf[i] = src[i];

}

PC = {strncmp(src,"abcd",4) = 0}
a
b

c
d

0

1

2

3

4

5

6

7

8

9

10

11

12

s
r
c

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 6 / 16



Smart Fuzzing
Example

a
b

c
d

0

1

2

3

4

5

6

7

8

9

10

11

12

b
u
f

fp
retad

d
r

void copy(char *src)

{

char buf[5];

int i;

if(strncmp(src, "abcd", 4)) {

printf("error\n");

return;

}

for(i=0; src[i]; i++)

buf[i] = src[i];

}

PC = {strncmp(src,"abcd",4) = 0 ∧
strlen(src) ≥ 13}

loop analysis

a
b

c
d

0

1

2

3

4

5

6

7

8

9

10

11

12

s
r
c

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 6 / 16



Smart Fuzzing
Example

0

1

2

3

4

5

6

7

8

9

10

11

12

b
u
f

fp
retad

d
r

void copy(char *src)

{

char buf[5];

int i;

if(strncmp(src, "abcd", 4)) {

printf("error\n");

return;

}

for(i=0; src[i]; i++)

buf[i] = src[i];

}

PC = ∅
a
b

c
d

A

B

B

B

B

C

C

C

C

0

1

2

3

4

5

6

7

8

9

10

11

12

s
r
c

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 6 / 16



Smart Fuzzing
Example

a
b

c
d

A

B

B

B

B

C

C

C

C

0

1

2

3

4

5

6

7

8

9

10

11

12

b
u
f

fp
retad

d
r

void copy(char *src)

{

char buf[5];

int i;

if(strncmp(src, "abcd", 4)) {

printf("error\n");

return;

}

for(i=0; src[i]; i++)

buf[i] = src[i];

}

PC = {strncmp(src,"abcd",4) = 0}
a
b

c
d

A

B

B

B

B

C

C

C

C

0

1

2

3

4

5

6

7

8

9

10

11

12

s
r
c

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 6 / 16



Smart Fuzzing

1 Hybrid analysis of the executable code to infer relationships
between input data and program behavior:

static analysis: sound but often overly conservative
dynamic analysis: unsound but accurate

2 Generate new input data in order to drive the execution
towards “dangerous” paths (from the security point of view)

3 Execution monitoring to detect the overwriting of sensitive
information with untrusted data

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 7 / 16



Challenges

CISC architecture
Intel IA-32 includes over 300 different
opcodes

Conditional predicates

Infer existing relationship between
conditional predicates on processor
control registers and input data

Loops

Programs that contain loops could
also have an infinite number of
execution paths

intermediate representation (4
instructions, 5 expressions, side
effects are made explicit)

reconstruction of input-dependent
conditional predicates

abstraction of loop behavior
+

heuristics

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 8 / 16



Challenges

CISC architecture
Intel IA-32 includes over 300 different
opcodes

Conditional predicates

Infer existing relationship between
conditional predicates on processor
control registers and input data

Loops

Programs that contain loops could
also have an infinite number of
execution paths

intermediate representation (4
instructions, 5 expressions, side
effects are made explicit)

reconstruction of input-dependent
conditional predicates

abstraction of loop behavior
+

heuristics

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 8 / 16



Reconstruction of Conditional Predicates

1 disassembly

2 intermediate representation

3 predicate analysis

4 path analysis

Example: strncmp(src, "abcd", 4), first iteration

je 0x08048394

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 9 / 16



Reconstruction of Conditional Predicates

1 disassembly

2 intermediate representation

3 predicate analysis

4 path analysis

static

the evaluated condition is made
explicit

Example: strncmp(src, "abcd", 4), first iteration

JMP (r1(ZF) == c1(0x1)) c32(0x08048394)

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 9 / 16



Reconstruction of Conditional Predicates

1 disassembly

2 intermediate representation

3 predicate analysis

4 path analysis

static

dynamic propagation of control
flags reaching definitions

expression simplification

Example: strncmp(src, "abcd", 4), first iteration

JMP (m8[(r16(DS)+r32(ESI))] == m8[(r16(ES)+r32(EDI))]) c32(0x08048394)

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 9 / 16



Reconstruction of Conditional Predicates

1 disassembly

2 intermediate representation

3 predicate analysis

4 path analysis

static

dynamic

recursive propagation of
dynamic reaching definitions

subexpression propagation is
halted when an input-related
variable is found

Example: strncmp(src, "abcd", 4), first iteration

JMP (m8[c32(0xbfffffdc)] == c8(0x61)) c32(0x08048394)

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 9 / 16



Loop Behavior Abstraction

1 loops identification (performed statically)

2 identification of induction variables used in loop condition

3 search for “dangerous” memory assignments in loop’s body

4 guess of the number of iterations required in order to overwrite the
nearest sensitive memory area

Example: for loop, from the copy() procedure

...

for(i=0; src[i]; i++)

buf[i] = src[i];

...

loop condition

memory assignment
whose target address

uses an induction variable

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 10 / 16



Loop Behavior Abstraction

1 loops identification (performed statically)

2 identification of induction variables used in loop condition

3 search for “dangerous” memory assignments in loop’s body

4 guess of the number of iterations required in order to overwrite the
nearest sensitive memory area

Example: for loop, from the copy() procedure

i = 0;

buf[i] = src[i];

i = i + 1;

if(src[i] 6= 0) goto B2;

B2

...

loop condition

memory assignment
whose target address

uses an induction variable

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 10 / 16



Loop Behavior Abstraction

1 loops identification (performed statically)

2 identification of induction variables used in loop condition

3 search for “dangerous” memory assignments in loop’s body

4 guess of the number of iterations required in order to overwrite the
nearest sensitive memory area

Example: for loop, from the copy() procedure

i = 0;

buf[i] = src[i];

i = i + 1;

if(src[i] 6= 0) goto B2;

B2

...

loop condition

memory assignment
whose target address

uses an induction variable

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 10 / 16



Loop Behavior Abstraction

1 loops identification (performed statically)

2 identification of induction variables used in loop condition

3 search for “dangerous” memory assignments in loop’s body

4 guess of the number of iterations required in order to overwrite the
nearest sensitive memory area

Example: for loop, from the copy() procedure

i = 0;

buf[i] = src[i];

i = i + 1;

if(src[i] 6= 0) goto B2;

B2

...

loop condition

memory assignment
whose target address

uses an induction variable

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 10 / 16



Loop Behavior Abstraction

1 loops identification (performed statically)

2 identification of induction variables used in loop condition

3 search for “dangerous” memory assignments in loop’s body

4 guess of the number of iterations required in order to overwrite the
nearest sensitive memory area

Example: for loop, from the copy() procedure

i = 0;

buf[i] = src[i];

i = i + 1;

if(src[i] 6= 0) goto B2;

B2

...

loop condition

memory assignment
whose target address

uses an induction variable

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 10 / 16



Architecture

dynamic analysis

static analyzer

constraints generator

execution and
monitoring

new inputs generator

heuristics

constraints
solver

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 11 / 16



Static Analysis

disassembly loop

disassembler
intermediate

code generator

CFG generator

liveness
analyzer

control
dependency

analyzer
loop identifier

executable
code

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 12 / 16



Dynamic Analysis

execution loop

indirection
resolver

instruction
evaluator

predicate
analyzer

expression
simplifier

path analyzer loop analyzer
constraints
generator

startup state
analyzer

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 13 / 16



Prototype

Implementation

Able to analyze ELF executables compiled with GCC, running
on Linux operating system and IA-32 platform

∼ 20000 lines of Python code
∼ 1000 lines of C code

ptrace()-based dynamic analysis

Problem: efficiency

Analyses are computationally expensive (∼ 50 seconds for
/bin/ls).
Solutions:

dynamic instrumentation instead of debugging

native compilation (Python → C)

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 14 / 16



Conclusions

Contributions

New smart fuzzing model for the automatic detection of security
relevant flaws in executable code

Prototype tool (open source infrastructure for the analysis of
executable code)

Adaption of program analysis techniques to executable code

New algorithms for loop and jump conditions analysis

Future work

Our prototype must still be completed

Use our prototype for finding previously unknown vulnerabilities

Improve model precision and prototype performances

Can our approach be applied to malware analysis? (i.e. need to
support self modifying code, . . . )

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 15 / 16



Thank you! Questions?

Lanzi, Martignoni, Monga, Paleari A Smart Fuzzer for x86 Executables May 19, 2007 16 / 16


