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ABSTRACT

The output of a disassembler is used for many different purposes
(e.g., debugging and reverse engineering). Therefore, disassem-
blers represent the first link of a long chain of stages on which any
high-level analysis of machine code depends upon. In this paper
we demonstrate that many disassemblers fail to decode certain in-
structions and thus that the first link of the chain is very weak. We
present a methodology, called N-version disassembly, to verify the
correctness of disassemblers, based on differential analysis. Given
a set of n− 1 disassemblers, we use them to decode fragments of
machine code and we compare their output against each other. To
further corroborate the output of these disassemblers, we developed
a special instruction decoder, the nth, that delegates the decoding to
the CPU, the ideal decoder. We tested eight of the most popular
disassemblers for Intel x86, and found bugs in each of them.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Reliability, Verification

Keywords

Software testing, differential testing, automatic test generation

1. INTRODUCTION
Disassemblers translate a stream of machine code into a sequence
of assembly instructions. This kind of tools is used in a wide range
of different applications. For example, disassemblers are used in
debuggers, to closely inspect the execution of a program and they
represent the most important class of tools for reverse engineers.
Disassemblers are also used in CPU emulators, bug finding tools,
binary rewriting systems, sandboxes, and many other types of ap-
plications. CPU emulators rely on disassemblers to interpret short
sequences of instructions and to emulate each instruction appro-
priately. Binary rewriting tools rely on disassemblers to transform
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the program into an intermediate form suitable for rewriting [2].
Finally, sandboxes for the execution of untrusted code, like the
Google Native Client [31], instead rely on disassemblers to ana-
lyze an untrusted piece of code, and to tell if it adheres to a certain
set of security policies and if it is safe to execute.

To disassemble a piece of machine code means to translate it
into a sequence of assembly instructions. Therefore, the disassem-
bly process is an iterative process that consists in two phases: (I)
instruction decoding and (II) selection of the next instruction of
the program to decode. In the first phase a piece of code is trans-
lated into a single assembly instruction. In the second phase the
disassembler selects the next piece of code to decode according
to the format (or the semantics) of the instruction previously de-
coded. This process is repeated until all the code is disassembled.
At first sight, the iterative disassembly process just described ap-
pears trivial. Unfortunately, theoretically speaking, disassembling
is equivalent to the halting problem [15]. The main reasons for such
complexity are the impossibility of separating data from code, self-
modifying code (i.e., code that modifies itself at run-time), and in-
direct control transfers (i.e., control transfers whose target is com-
puted dynamically). Practically speaking instead, disassemblers as-
sume that certain compilers conventions are respected, adopt sev-
eral heuristics to tackle the aforementioned problems [4, 12, 13,
28], and work reasonably well. Nevertheless, when the code being
disassembled violates the assumed conventions, when the heuris-
tics fail, or even worse when code is obfuscated, disassemblers
produce completely unreliable results.

The problems mentioned in the previous paragraph are all spe-
cific to the second phase of the disassembly process (i.e., the se-
lection of the next instruction to disassemble). The first phase, the
decoding of an instruction, has always been assumed to be a trivial
translation to perform. Nowadays, CISC CPUs have a very large
instruction set, where instructions can often be encoded in multiple
ways and typically support multiple operand types. Therefore, al-
though instructions decoding still remains a mechanical translation
from one form to another, the complexity this kind of translation
conceals is not negligible. A complex translation process implies
code that is tedious to write, and such code is much more prone
to bugs. Since, in any high-level analysis of machine code, disas-
semblers represent the first link of a long chain of interconnected
phases, a bug in the disassembly module would produce dangerous

cascade effects on all the subsequent phases.
In this paper we present a fully automated methodology to eval-

uate the correctness of the instruction decoder, the component of
disassemblers that is responsible for the decoding of machine in-
structions. Our methodology, we call N-version disassembly, is
based on differential analysis [21] and is currently specific for Intel
x86 architecture. Given an arbitrary string of bytes, we use multiple



(n−1) disassemblers to decode the instruction potentially starting
with the first byte of the string, and then we compare the output
of the various disassemblers to detect discrepancies. Any discrep-
ancy is a symptom that the instruction decoder of at least one of
the tested disassemblers is buggy. Since outputs can be discor-
dant, we assign to each disassembler a coefficient that describes
the confidence we have in its output; the coefficient is proportional
to the number of disassemblers that agree on that particular result.
To further corroborate the output of the tested disassemblers, we
developed ourselves the nth instruction decoder used for the differ-
ential analysis. Our instruction decoder does not perform itself the
decoding, but instead delegates the duty to the perfect instruction

decoder implemented in the CPU. For each input string, we use this
decoder to infer some information about the instruction the string
encodes (e.g., whether the instruction is valid, the length of the in-
struction, and the type of operands) and then we check whether the
output produced by the tested disassemblers is compliant with the
format of the instruction. Since, the output of the perfect decoder
is correct by definition, any incompatibility between the format of
the instruction inferred with the help of the CPU and the format of
the instruction reported by a tested disassembler denotes that the
disassembler is not working properly.

We demonstrate experimentally that the decoding of instructions
of CISC architectures, which apparently looks like a trivial task, is
in practice complex and error prone. Indeed, we used the proposed
methodology to evaluate several off-the-shelf and popular disas-
semblers and we found that all of them contained bugs that could
compromise the correctness of any high-level analysis that depends
on their output.

In summary the paper makes the following contributions:

1. a fully automated methodology to evaluate the correctness of
a disassembler;

2. an instruction decoder that leverages the physical CPU (i.e.,
the perfect instruction decoder) to infer the format of instruc-
tions;

3. an experimental evaluation of 8 off-the-shelf Intel x86 disas-
semblers, demonstrating the effectiveness of our methodol-
ogy and the existence of multiple defects in all tested disas-
semblers.

The paper is organized as follows. Section 2 motivates our work.
Section 3 presents the details of our testing methodology. Section 4
presents the results of our experimental evaluation. Section 5 de-
scribes the related work and Section 6 concludes the paper.

2. MOTIVATIONS
This section briefly presents the format used in the Intel x86 archi-
tecture to encode instructions; that should let the reader understand
why developing a disassembler for a CISC architecture is a tedious
and error prone task. Furthermore, the section discusses the poten-
tial implications of bugs in a disassembler.

2.1 Challenges in Instruction Decoding
Today, Intel x86 is the most widely adopted computer architecture.
It is a complex CISC architecture, with an incredible number of
different instructions, of variable length, and a myriad of subtle and
complex details. All that makes the development of an instruction
decoder for this architecture a very tedious and error prone task.

Figure 1 depicts the format of an Intel x86 instruction. An in-
struction is composed of different fields: it starts with up to 4 pre-
fixes, followed by an opcode, an addressing specifier (i.e., ModR/M

Prefixes
(up to 4)

Opcode ModR/M SIB Displacement Immediate

1 byte each 1-3 bytes 1 byte

(optional)

1 byte

(optional)

0,1,2 or 4 bytes 0,1,2 or 4 bytes

Mod Reg/Opcode R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

Figure 1: Intel x86 instruction format

and SIB fields), a displacement and an immediate data field [16].
Opcodes are encoded with one, two, or three bytes, but three ex-
tra bits of the ModR/M field can be used to denote certain opcodes.
In total, the instruction set is composed by more than 700 possi-
ble values of the opcode field. The ModR/M field is used in many
instructions to specify non-implicit operands: the Mod and R/M sub-
fields are used in combination to specify either registry operands or
to encode addressing modes, while the Reg/Opcode sub-field can
either specify a register number or, as mentioned before, additional
bits of opcode information. The SIB byte is used with certain con-
figurations of the ModR/M field, to specify base-plus-index or scale-
plus-index addressing forms. The SIB field is in turn partitioned in
three sub-fields: Scale, Index, and Base, specifying respectively
the scale factor, the index register, and the base register. Finally,
the optional addressing displacement and immediate operands are
encoded in the Displacement and Immediate fields respectively.
Since the encoding of the ModR/M and SIB bytes is not trivial at all,
the Intel x86 specification provides tables describing the semantics
of the 256 possible values each of these two bytes might assume.
In conclusion, it is easy to see that elementary decoding operations,
such as determining the length of an instruction, require to decode
the entire instruction format and to interpret the various fields cor-
rectly.

The advent of several instruction extensions (e.g., Multiple Math
eXtension (MMX) and Streaming SIMD Extensions (SSE)) made
the instruction decoding process even more complicated. As an ex-
ample, consider the byte strings f3 ae and f3 0f e6, encoding
respectively the instructions rep scasb and cvtdq2pd. The byte
f3 is a prefix that is found in both instructions, but it serves two dif-
ferent purposes: it represents a rep prefix (to repeat the execution
of an instruction) in the first case and a mandatory prefix for SSE
instructions in the second case. Therefore, an instruction decoder
has to consider that the prefix f3 has to be interpreted differently,
according to the subsequent sequence of bytes. The decoder must
treat the prefix as a rep only when it is followed by a sequence of
bytes that encodes a string or I/O operation (e.g., scasb), and as a
preamble for SSE instructions otherwise (e.g., cvtdq2pd).

Finally, Intel x86 reference documentation sometimes lacks proper
specifications for certain instructions, and states that others may
have undefined effects in certain corner-cases. As an example, the
use of a rep prefix with an instruction that is neither a string nor an
I/O operation (e.g., rep dec) has undefined effects. In these situa-
tions, different instruction decoders often give completely different
interpretations of the same byte sequence.

The aforementioned issues make instruction decoding a complex
and tedious task. This complexity is testified by the size, in term
of lines of code, of disassemblers for this architecture. Indeed, on
average, the open-source disassemblers we evaluated in our exper-
iments included 9000 lines of code. On the other side, we mea-
sured that the size of a disassembler for a RISC architecture (e.g.,
a SPARC) is less than a third.



2.2 Implications of Incorrect Disassembly
Disassemblers represent the front end of all high-level analyses and
applications operating on machine code. Even the simplest bug in
the instruction decoder might have serious implications on the fi-
nal results provided by these tools. In the following paragraphs,
we speculate on the potential implications of incorrect disassem-
bly on debuggers, reverse engineering tools, CPU emulators, and
sandboxes.

Debuggers and other reverse engineering tools are used in a wide
variety of different contexts, ranging from software testing to mal-
ware analysis. The efficacy of these tools heavily depends on the
accuracy of the module responsible for instruction decoding. Imag-
ine a developer hunting for a defect in an application only available
in binary form. If the faulty instruction were not properly decoded,
then the defect could never be found. Moreover, even if the faulty
instruction were decoded correctly but another one were not, there
would be cascading effects that could prevent the developer from
understanding the true behavior of the code fragment. Even worse,
the developer would have no chance to realize that the disassembly
he is trying to understand is wrong.

To emulate a physical CPU and to execute a program, CPU em-
ulators mimic the fetch-decode-execute cycle of the CPU. There-
fore, they have to correctly decode the instructions to execute. If
the emulator did not decode an instruction exactly as the physical
CPU would do, the instruction would not be properly executed, and
consequently the emulated program could behave unexpectedly or
could even fail to execute.

Sandboxes based on proof carrying code [24] or on simplified
versions of this model (e.g., Google Native Client [31]) use dis-
assemblers to analyze the code and to verify if it conforms to the
selected security policies. To address the impossibiliy of analyz-
ing any arbitrary piece of CISC machine code, sandboxes typically
impose very strict constraints on the structure of the programs they
execute, to guarantee that the entire code can be analyzed. For
example, Google Native Client requires that all valid instruction
addresses are reachable by a fallthrough disassembly that starts at
the base address. However, such constraints are not sufficient to
guarantee safety. Indeed, a bug in the disassembler could allow
the sandbox to erroneously consider a malicious code as safe. For
example, if the disassembler failed to recognize the length of an
instruction, the sandbox would analyze a piece of code that differs
from the code that would be executed.

3. TESTING DISASSEMBLERS
The perfect disassembler is the one that decodes instructions ex-
actly as the CPU does. Obviously, we are assuming that the CPU
always decodes correctly instructions: after all, the CPU is the
hardware component that determines the semantics of a sequence
of bytes. Therefore, ideally we would like to compare the output of
the decoding performed by the CPU with the output of the disas-
sembler under testing to verify if they correspond. Unfortunately,
the fetch-decode-execute cycle is executed atomically by the CPU
and thus, from software, we cannot look at the intermediate out-
put of the three-step hardware execution cycle, but we can only
tell whether an instruction is correctly executed or it generates an
exception. However, the partial information about an instruction
provided by the instruction decoder of the CPU plays an important
role for validating the correctness of software-based instruction de-
coders, and it can be combined with the information obtained from
other software-based disassemblers.

Our testing methodology is based on differential testing [21] and
consists in comparing the output of multiple disassemblers. The

disassemblers used for the testing are off-the-shelf disassemblers
plus a special instruction decoder we have developed, which uses
the CPU to infer part of the format of instructions. We call our
methodology N-version disassembly, as we consider the output of
n distinct disassemblers.

Figure 2 illustrates our testing methodology in action. Given an
arbitrary sequence of bytes, we feed this sequence to a set of off-
the-shelf disassemblers (D1, . . . , D4 in figure) and to our custom
disassembler (DCPU in figure) and then we compare their output.
Recall that our goal is to test only the instruction decoder com-
ponent; therefore, in the case the input string encodes a sequence
of more than one instruction, we consider only the output relative
to the first one. Since not all the off-the-shelf disassemblers offer
an API which allows to analyze in detail the format of an instruc-
tion, the output we consider is the assembly representation of the
instruction. Although all disassemblers are supposed to produce
the exact same output, in practice their output might differ slightly.
For example, certain disassemblers make explicit the size of the
various operands, while others do not. Therefore, we process the
output of the various off-the-shelf disassemblers through a normal-
ization routine, to remove the aforementioned differences and to
make their output easily comparable. The normalized assembly
instructions are then compared to each other and grouped when
they correspond. The output produced by our custom disassem-
bler, DCPU, is not comparable as is with the output produced by the
other disassemblers. Indeed, DCPU produces in output only partial
information about the format of the instruction (i.e., the length, the
opcode, and the format of non-implicit operands) while D1, . . . , D4

output an assembly representation of the instruction. Therefore, we
can only check if the format inferred by DCPU is compatible with
the format reported by D1, . . . , D4. Since DCPU decodes an instruc-
tion through the decoder of the physical CPU, its output is consid-
ered correct by definition. Therefore, all the instructions (decoded
by the other disassemblers) whose format is not compatible with
the format reported by DCPU are considered wrong and discarded.
In summary, we end up with one or more groups of disassemblers
that agree on their output and whose output is compatible with that
of DCPU. The rationale is that the probability that the output of a
group of disassemblers is correct is proportional to the number of
agreeing disassemblers. Clearly, the higher the number of off-the-
shelf disassemblers considered in the testing, the higher the con-
fidence in the result obtained. The corner-case situation is when
n = 2: a disassembler can be tested only against DCPU. In such
a situation we could validate only partially the correctness of the
output because DCPU provides only partial information about the
instruction (i.e., whether it is valid, the length, and the format of
non-implicit the operands). Thus, we would not be able to validate
the correctness of the mnemonic of the instruction nor of the for-
mat of implicit operands. However, we are not concerned with this
problem since our approach is specific for the Intel x86 architecture
and since there are plenty of disassemblers available.

We generate the sequences of bytes used to test disassemblers au-
tomatically, by leveraging two different techniques: (I) completely
random input generation, and (II) an algorithmic technique, that
provides high opcode coverage.

In the remaining of this section we discuss the proposed testing
methodology in detail. To ease the presentation, the technique we
have developed to generate inputs is described at the end of the
section, since it is a variation of our custom instruction decoder.

3.1 Decoding with Off-the-shelf Disassemblers
Given a sequence of bytes, we invoke each of the off-the-shelf dis-
assemblers in turn to try to decode this sequence and then we exam-



88 b7 53 10 fa ca 77 92 a4 9c 4a ab 05 77 1b 9e

D1 D2 D3 D4 DCPU

Assembly instruction normalizer

mov 0xcafa1053[edi], esi

(6 bytes)
invalid

MOV [EDI+0xCAFA1053],DH

(6 bytes)

mov byte ptr [edi-0x3505efad], dh

(6 bytes)

Output evaluator

mov dword [edi+0xcafa1053],esi invalid mov byte [edi+0xcafa1053],dh mov byte [edi+0xcafa1053],dh

valid, 6 bytes,
5 bytes addressing-form

specifier operand

{D1}→ 0.33 {D2}→ 0 {D3,D4}→ 0.66

Figure 2: Overview of N-version disassembly in action

ine the output produced. As our test inputs encode both valid and
invalid instructions, a disassembler can interpret the input either as
a valid or an invalid instruction. When a disassembler decodes a
valid instruction, it also generates an assembly representation of
the instruction, and the list of the bytes that encode the instruction.
From this list we infer the length of the instruction. We use the
assembly representation because not all disassemblers offer an API
to inspect the internal structure of instructions.

We configure the disassemblers to decode instructions using the
same assembly syntax (i.e., the Intel syntax). Nevertheless, even
if a valid instruction is properly decoded by two or more disas-
semblers, the provided assembly representations very often differ
in many subtle details. Indeed, we have not yet found two disas-
semblers that use the same exact assembly syntax. Consider the
sequence of bytes shown in Figure 2. Both D3 and D4 consider the
sequence 88 b7 53 10 fa ca a valid instruction, but the assem-
bly representations provided by the two disassemblers differ. As
an example, D4 explicitly states that the first operand refers to a
8-bit memory location, while in the output provided by D3 the size
of the first operand has to be inferred from the size of the second
one. Similarly, the memory address displacement provided by D4

is negative, while D3 translated it into a positive value. To tackle
such kind of differences in the syntax we normalize the assembly
outputs using a set of manually developed normalization rules. For
example, both instructions resulting from the normalization of the
output of D3 and D4 make explicit the size of the memory loca-
tions and use positive displacements. Currently our prototype im-
plementation of N-version disassembly supports 8 different disas-
semblers and adopts about a hundred different normalization rules.
It is worth noting that to support new disassemblers, new normal-
ization rules might be required and that the effort to write new rules
depends on the disassembler.

3.2 CPU-assisted Instruction Decoder
We have developed a custom instruction decoder, we called CPU-

assisted instruction decoder, that performs the decoding leveraging
directly the physical CPU. Using this decoder, given an arbitrary
sequence of bytes, we can detect if (I) it encodes a valid instruction,
(II) the length of the instruction encoded by the sequence, and (III)
the format of non-implicit operands of the instruction. Since the
decoder delegates the decoding to the CPU, it is very simple (less
than 500 lines of C code) and well tested.

Our algorithm makes specific assumptions about the behavior of
the Intel x86 CPU, especially about how the CPU fetches the code

from memory. We do not know if the algorithm would work with
other CPUs. However, our feeling is that RISC CPUs do not satisfy
our assumptions.

3.2.1 Decoding Instruction Length

Given an arbitrary sequence of bytes B = b1 . . .bn, the first goal is
to detect if the bytes represent a valid instruction. Then, for valid
instructions, we have to infer their length. Our decoder exploits the
fact that the CPU fetches from the memory the bytes of the instruc-
tion and decodes them incrementally. The decoder executes the in-
put string B in a specially crafted execution environment, such that
every fetch of the bytes composing the instruction can be observed.

The decoder initially partitions B into subsequences of incremen-
tal length (B1 = b1, B2 = b1b2, . . . , Bn = b1 . . .bn) and then exe-
cutes one subsequence after another, using single-stepping. Since
the goal is to intercept the fetch of the various bytes of the instruc-
tion, the ith subsequence Bi (with i = 1 . . .n) is placed in memory
such that it overlaps two adjacent memory pages, m and m′. The
first i bytes are located at the end of m, and the remaining bytes
at the beginning of m′. The two pages have special permissions:
m allows read and execute accesses, while m′ prohibits any access.
When the instruction is executed, the i bytes in the first page are
fetched incrementally by the CPU. If the instruction is longer than
i bytes, when the (i + 1)th byte is fetched the CPU raises a page
fault exception (where the faulty address corresponds to the base
address of m′ and the cause of the fault is an instruction fetch) be-
cause the page containing the byte being read, m′, is not accessible.
If the instruction is i bytes long instead, the CPU executes the in-
struction without accessing the bytes in m′. In such a situation the
instruction can be both valid and invalid. The instruction is valid,
and i bytes long, if it is executed without causing any exception; it
is also valid if the CPU raises a page fault or a general protection
fault exception. A page fault exception occurs if the instruction
tries to read or write data from the memory (in this case the faulty
address does not correspond to the base address of m′); a general
protection fault exception is raised if the instruction has improper
operands (e.g., it expects aligned operands but alignment is not re-
spected). The instruction is invalid instead, if the CPU raises an
illegal instruction exception. If the instruction is either valid or in-
valid the decoder returns, otherwise, it repeats the process with the
next subsequence, Bi+1.

Figure 3 shows our CPU-assisted decoder in action on two dif-
ferent sequences of bytes, one valid and one invalid. The first
sequence is B = 88 b7 53 10 fa ca ..., corresponding to the



B = 88 b7 53 10 fa ca ... (valid, six bytes long)

B1

0x1f000 0x1ffff 0x20000 0x20fff

88 b7 53 10 fa ca ...

page fault (execution) at address 0x20000 → longer

B2

0x1f000 0x1ffff 0x20000 0x20fff

88 b7 53 10 fa ca ...

page fault (execution) at address 0x20000 → longer

B6

0x1f000 0x1ffff 0x20000 0x20fff

88 b7 53 10 fa ca ...

page fault (write) at address 0x78378943 → valid

(a)

B = f0 00 c0 ... (invalid)

B1

0x1f000 0x1ffff 0x20000 0x20fff

f0 00 c0 ...

page fault (execution) at address 0x20000 → longer

B2

0x1f000 0x1ffff 0x20000 0x20fff

f0 00 c0 ...

page fault (execution) at address 0x20000 → longer

B3

0x1f000 0x1ffff 0x20000 0x20fff

f0 00 c0 ...

invalid instruction at address 0x1fffd → invalid

readable and
executable page

non-readable and
non-executable page

(b)

Figure 3: Computation of the length of instructions using our CPU-assisted instruction decoder: (a) valid and (b) invalid instructions.

instruction mov byte [edi+0xcafa1053],dh. The decoder al-
locates two adjacent memory pages and removes any permission
from the second one. Then, it starts with the first subsequence B1 =
88. The byte is positioned at the end of the page and then executed
through single stepping. The CPU fetches and tries to decode the
instruction but, since the instruction is longer than one byte, it tries
to fetch the next bytes from the protected page, raising a page fault.
The decoder detects the fault and concludes that the instruction is
longer than one byte (in our example the faulty address is 0x20000,
the base address of the second page). It repeats the procedure with
B2 = 88 b7 and gets the same result. It tries again with B3, B4, B5,
and finally tries with six bytes. Since the instruction is six bytes
long, the CPU executes the instruction without accessing the pro-
tected memory page. However, the instruction writes into the mem-
ory and thus causes a page fault. As in this case the faulty address
(0x78378943) differs from the address of the protected page, our
decoder can tell the instruction is valid and that it is six bytes long.
It is worth noting that a sequence of bytes cannot encode, at the
same time, a valid instruction and a prefix of a longer instruction.
Indeed, such a situation would be ambigous for the CPU. The sec-
ond byte sequence in the example of Figure 3(b) is B = f0 00 c0

... and represents an invalid instruction. Exactly as before, our
decoder executes the first two subsequences B1 and B2 and detects
that the instruction is potentially longer because the CPU fetches
a third byte from the protected page. When B3 is executed, the
CPU does not fetch more bytes but instead raises an illegal instruc-
tion exception, testifying that B3 is neither a valid instruction, nor
a valid prefix for longer instructions.

It is worth noting that, although the CPU-assisted decoder is im-
plemented as a user-mode application, it can also successfully de-
code privileged instructions (i.e., instructions that can be executed
only in kernel-mode). That is possible because the CPU raises a
special exception when a valid privileged instruction is executed
without appropriate privileges, and this exception differs from the
one raised to notify an attempt to execute an invalid instruction.

3.2.2 Decoding Non-implicit Operands

Once the decoder has found the length of an instruction, it tries to
infer the type and the value of the non-implicit operands of the in-
struction (i.e., the operands that are not implicitly encoded in the
opcode of the instruction). The technique used by our decoder to

achieve this goal is an extension of the technique described in the
previous paragraphs. Currently, our CPU-assisted decoder is capa-
ble of decoding addressing-form specifier operands and immediate
operands.

Any Intel x86 instruction (Figure 1) is composed by an optional
prefix, an opcode, and optional operands. To ease the presentation
we assume instructions have no prefix; in practice, prefixes are de-
tected using a white-list and considered part of the opcode. Given
an instruction, encoded by the sequence of bytes B = b1 . . .bn, the
format of operands is detected by performing a series of tests on
some instructions derived by changing the bytes of B that follow the
opcode and represent the operands of the instruction. If the opcode
is j bytes long, the remaining n− j bytes represent the operands,
and the sequence of bytes encoding the instruction can be written
as B = b1 . . .b jb j+1 . . .bn.

The assumption at the root of our algorithm is that each type of
operand is encoded using a different encoding: immediate operands
(Imm) are encoded as is (in little-endian), addressing-form spec-
ifier operands (Addr) are encoded using ModR/M and SIB encod-
ing, and Imm∪Addr 6= Imm∩Addr. In other words, an immedi-
ate operand does not necessarily represent a valid addressing-form
specifier operand, and vice versa. Therefore, given an instruc-
tion encoded as B = b1 . . .b jb j+1 . . .bn, we expect a new sequence
B′ = b1 . . .b jb

′
j+1 . . .b′m to be valid if b′j+1 . . .b′m represents a new

operand of the same type of b j+1 . . .bn. Note that m and n can differ
since operands of the same type can differ in length. Contrarily, we
expect another sequence of bytes B = b1 . . .b jb j+1 . . .bm to be in-

valid if b j+1 . . .bm represent an operand of a different type. There-
fore, if an instruction with a j bytes long opcode has an immediate
operand, the following holds:

∀b′j+1 . . .b′m ∈ Imm,B′ = b1 . . .b jb
′
j+1 . . .b′m is valid.

In other words, the bytes following the opcode encode an immedi-
ate operand if the combination of the opcode with all the possible
immediate operands gives always valid instructions. Fortunately,
with few tests it is possible to estimate if the previous equation
holds. In fact, it is sufficient to verify if it holds for a small number
of operands in Imm\Addr. The same applies for an instruction with
an addressing-form specifier operand. Our current prototype of
the decoder uses only five tests to detect addressing-form specifier
operands and four tests to detect 32-bit immediate operands. Since



B = 88 b7 53 10 fa ca
mov [edi+0xcafa1053],dh

B′
2

0x1f000 0x1ffff 0x20000 0x20fff

88 00 53 10 fa ca

page fault (write) at address 0x00 → valid

B′
3

0x1f000 0x1ffff 0x20000 0x20fff

88 40 00 10 fa ca

page fault (write) at address 0x000 → valid

B′
4

0x1f000 0x1ffff 0x20000 0x20fff

88 44 25 00 fa ca

page fault (write) at address 0x00 → valid

B′
7

0x1f000 0x1ffff 0x20000 0x20fff

88 04 25 00 00 00 00

page fault (write) at address 0x00 → valid

test passed → operand is an addressing-form specifier

(a)

B = 05 12 34 56 78
add eax,0x78563412

B′
2

0x1f000 0x1ffff 0x20000 0x20fff

05 00 34 56 78

page fault (execution) at address 0x20000 → longer

test failed → operand is not an addressing-form specifier

B′
5

0x1f000 0x1ffff 0x20000 0x20fff

05 00 00 00 01

no exception → valid

B′′
5

0x1f000 0x1ffff 0x20000 0x20fff

05 00 00 00 02

no exception → valid

B
′′′···
5

0x1f000 0x1ffff 0x20000 0x20fff

05 00 00 00 255

no exception → valid

test passed → operand is a 32-bit immediate

(b)

Figure 4: Decoding of non-implicit operands using our CPU-assisted instruction decoder: instructions with (a) addressing-form

specifier operand and (b) immediate operand.

the opcode can have a variable length (from one to three bytes),
our CPU-assisted decoder performs the aforementioned tests with
opcodes of incremental length (i.e., j = 1 . . .3).

Figure 4 shows some of the tests performed by our CPU-assisted
instruction decoder to infer the format of the operands of two in-
structions: the first instruction has an addressing-form specifier
operand and the second one a 32-bit immediate operand. For the
first instruction, the decoder initially assumes that the opcode is
one byte long, and performs the analysis of the remaining bytes to
detect if they encode an addressing-form specifier operand. To do
that it combines the opcode 88 with other valid addressing-form
specifier operands of variable length, some of which cannot be in-
terpreted as immediate operands. The first test consists in replac-
ing the alleged operand with a single byte operand and in executing
the resulting string. The CPU successfully executes the instruc-
tion. The same procedure is repeated with operands of different
length (two, three, and seven bytes). All the sequences of bytes are
found to encode valid instructions. Therefore, the input instruction
is composed by a single byte opcode followed by an addressing-
form specifier operand (b7 53 10 fa ca in the figure). The same
procedure is applied also to the second instruction. The addressing-
form specifier operand decoding fails, so the decoder attempts to
verify whether the last four bytes of the instruction encode a 32-bit
immediate. All tests performed are passed.

3.3 Evaluating Disassemblers Output
Starting from the normalized output of a set of off-the-shelf dis-
assemblers and the information provided by our CPU-assisted in-
struction decoder, we have to infer which disassemblers gave cor-
rect results and which did not. Let S = {s1,s2, . . . ,sn−1} be the set
of normalized disassembler outputs, where si is the output of the
disassembler Di. First, we compare the output of a disassembler,
si, with the results of our CPU-assisted decoder and discard the for-
mer if it does not agree with the latter. The two outputs agree if: (I)

both indicate that the sequence of byte does not encode a valid in-
struction or (II) both detect a valid instruction, the decoded instruc-
tions have the same length, and the types of non-implicit operands
match. We denote with S ⊆ S the set of normalized disassemblers
outputs compatible with the output of the CPU-assisted decoder.

When two off-the-shelf disassemblers agree with the CPU-assisted
decoder and recognize a valid instruction, contradictions between
their output might still be possible. In fact, there might exist two
normalized assembly instructions s j,sk ∈ S such that s j 6= sk. To
deal with disagreeing outputs, we associate to each output a coef-
ficient of agreement. The rationale is to be more confident in the
output with the highest agreement among disassemblers. We group
disassemblers with equivalent output into equivalence classes. Given
si ∈ S, its equivalence class is [si] = {s j ∈ S | si = s j}. Then we can

define the coefficient of agreement for si as c(si) = |[si]|/|S|, where
c(si)∈ [0,1] is directly proportional to the probability that si is cor-
rect. Note that if si ∈ S\S, then c(si) = 0.

As an example, consider the assembly instructions provided by
the disassemblers in Figure 2. D2 reports that the input sequence
does not encode any valid instruction, but this result contradicts
the CPU-assisted decoder; hence, s2 /∈ S, and c(s2) = 0. The other
disassemblers instead correctly decoded the sequence of bytes as a
valid six-byte instruction, thus S = {s1,s3,s4}. However, the nor-
malized assembly representations s3 and s4 match, while s2 differs.
Their respective confidence indexes are c(s3) = c(s4) = 0.66, and
c(s1) = 0.33.

3.4 Exhaustive Input Generation
The completeness of the testing depends on the completeness of
the inputs that are fed to the various disassemblers. To generate the
strings of bytes, representing valid and invalid instructions, that we
give in input to the disassemblers under analysis we use two strate-
gies: random input generation and CPU-assisted input generation.
Details about the two strategies are given in the next paragraphs.



3.4.1 Random Input Generation

The Intel x86 instruction set is very dense: a randomly generated
string of bytes represents a valid instruction with a high-probability.
In our experiments we have measured that about 75% of randomly
generated strings can be executed by the CPU, and thus represent
valid instructions. The advantage of using random input genera-
tion is that we can verify the ability of a disassembler at detecting
invalid instructions and at decoding instructions with exotic com-
bination of prefixes and operands (i.e., combinations that are very
unlikely to be found in compiled programs).

3.4.2 CPU-assisted Input Generation

The format of Intel x86 instructions is very complex and it is not
likely that a random input generator can cover the entire opcode
space. For this reason we adopt a second strategy to generate in-
puts, based on our CPU-assisted decoder. With this approach we
generate only valid instructions, avoid redundancy, and cover the
entire instruction set of the architecture. The CPU-assisted decoder
is used to enumerate the opcodes of the various instructions sup-
ported by the CPU.

We generate opcodes incrementally, by iterating over all possible
strings up to three bytes. We assume each string is a valid opcode
and we use the technique described in Section 3.2.2 to verify if the
alleged opcode, when combined with a proper operand, encodes a
valid instruction. In other words, we combine each alleged opcode
with different operands to see if all combinations of the opcode
with a particular type of operands yields always a valid instruc-
tion. When we find a valid instruction (and its format), we instan-
tiate a small set of strings representing combinations of the current
opcode with valid operands, and we try to prepend some possible
combinations of prefixes. Operands are selected according to some
heuristics developed to generate corner-case encodings. As an ex-
ample, for an addressing-form specifier operand, our heuristics se-
lect operands obtained from multiple combinations of the ModR/M,
SIB, and Displacement fields.

4. EVALUATION
In this section we present the results of the evaluation of our test-
ing methodology with eight off-the-shelf disassemblers. The tested
disassemblers are reported in Table 1, together with the release of
the software used in our experiments, and the size of the disas-
sembler in lines of code1. The release we tested correspond to the
latest available at the time of writing the paper. Our results witness
the effectiveness of the proposed testing methodology, and testify
that the development of a perfect instruction decoder is a very chal-
lenging task. Indeed, we found bugs in each disassembler. Some
of these bugs are very serious since they can be triggered even by
code produced by standard compilers.

4.1 Evaluation of the CPU-assisted Decoder
The output of the CPU-assisted instruction decoder is assumed to
be correct since it leverages the CPU to perform the decoding.
Therefore, when the output of a disassembler is incompatible with
the output of our decoder, we attribute this incompatibility to a bug
in the former. Clearly we are making two strong assumptions: first,
the output of our decoder is independent from the specific model of
the CPU used during testing and, second, our decoder contains no

1Some of the products under testing (i.e., ndisasm, OllyDBG, and
Google Native Client) include other functionalities besides instruc-
tion decoding. The numbers in the table are relative only to the size
of the instruction decoding component.

Disassembler Release Lines of code

diStorm64 [7] 1.7.30 5,647

Ida Pro [14] 5.2 n/a

libopcode [11] 2008-11-27 13,559

Native Client [31] 2009-06-18 14,497

ndisasm [23] 2.05.01 10,221

OllyDBG [32] 2001 3,442

Udis86 [22] 1.7 6,560

XED2 [17] 2009-03-04 n/a

Table 1: Disassemblers evaluated

CPU
Supported features

MMX SSE SSE2 SSE3 SSE4

Intel P4 (3.0GHz) X X X

Intel P3 (1.2GHz) X X

Intel Core2 (2.0GHz) X X X X

Intel Xeon (2.8GHz) X X X X

Table 2: Intel x86 CPUs used to evaluate the CPU-assisted in-

struction decoder

bugs. We confirmed that both assumptions are correct through an
extensive evaluation of our CPU-assisted decoder.

To demonstrate that the output of our CPU-assisted instruction
decoder does not change if the CPU on which it is executed changes,
we compared the output of our decoder produced using four differ-
ent CPUs. The CPUs we used for the evaluation are reported in
Table 2. All CPUs were all used in 32-bit mode. We generated
randomly 40,000 different 16 bytes long input strings and com-
pared the output our CPU-assisted decoder produced on the four
machines. With few exceptions, the output corresponded. We man-
ually analyzed all the exceptions and verified that all involved in-
structions belonged to extended instruction sets not supported by
all CPUs. For example, the string 0F 5A 5C BA 00 represents one
of the aforementioned exceptions. The string encodes an SSE2 in-
struction which is not supported by one of the CPUs we used for
the evaluation. In conclusion, if two CPUs support the same set of
features, our CPU-assisted instruction decoder produces the same
exact output.

To test the correctness of our CPU-assisted instruction decoder
we converted each of the 40,000 input strings used for the previ-
ous experiment into a program that executed the first instruction
encoded by the string through single stepping and returned zero,
if the execution of the instruction resulted in an illegal instruction
exception, or an integer greater then zero otherwise. The return
value represented the number of successfully executed bytes, com-
puted as the difference between the instruction pointer before and
after the execution of the first instruction of the string. We exe-
cuted all the generated programs and compared the output with the
output produced by our CPU-assisted instruction decoder. We man-
ually analyzed all the cases in which we observed disagreeing out-
puts and verified that all cases involved control transfer instructions
(e.g., jumps, function calls, and returns). Indeed, control transfer
instructions break the calculation of the instruction length because
the instruction pointer after the control transfer does not necessarily
point to the instruction following the previous one.

4.2 Evaluation of Off-the-shelf Disassemblers
Having verified that our CPU-assisted instruction decoder produced
correct results, we performed the testing of the eight software dis-
assemblers reported in Table 1. For our experiments, we employed



Disass.
Over Not supported Incorrect

supported Opc. Instr. Opc. Instr.

diStorm64 10 209 1084 1 1

Ida Pro 461 5 12 49 283

libopcode 331 22 376 105 815

Native Client 479 54 534 133 8232

ndisasm 282 26 388 70 642

OllyDBG 484 136 515 26 176

Udis86 289 4 6 3 4

XED2 44 0 0 12 122

Table 3: Summary of the experimental results

the CPU with the most complete set of features available: an Intel
Xeon (2.8GHz), supporting the instruction set extensions MMX,
SSE, SSE2, and SSE3.

We generated about 60,000 different input strings: 40,000 were
generated randomly and the remaining 20,000 string were selected
randomly from those generated using the CPU-assisted technique
described in Section 3.4. While the input strings generated by our
CPU-assisted decoder varied in length and included only a single
instruction, the strings generated randomly were all 16 bytes long
and thus could contain more than one instruction. The whole test-
ing process took about 15 hours, at an average rate of 1 second to
execute all disassemblers over a single input.

Table 3 summarizes the results of our experimental evaluation.
Defects are separated into three categories: (over supported) se-
quences of bytes that are considered valid instructions by the disas-
sembler, but that are invalid on the physical CPU; (not supported)
sequences that encode valid instructions for the physical proces-
sor, but are recognized as invalid by the disassembler; (incorrect)
strings of bytes that correspond to valid instructions, but for which
there exists another disassembler that produces an output with an
higher coefficient of agreement2 . For sequences classified as not

supported or incorrect we report the number of inputs and unique
opcodes that proved the defect. For over supported instructions we
report only the number of inputs that witnessed the defect, as these
sequences of bytes do not have a corresponding valid opcode. Note
that some over supported instructions might include some of the
54 instructions belonging to the SSE4 extended instruction set, not
supported by the CPU we used for the evaluation.

We randomly chose some of the instruction sequences that were
reported to be incorrectly decoded and we manually inspected them.
The manual verification confirmed the results of our testing method-
ology, with very few false positives due to some inaccuracies in
our normalization rules. We believe the high number of defects we
found testifies the effectiveness of our approach. None of the dis-
assemblers was found to be bug-free. Overall, the most accurate
disassembler was XED2; that is not surprising since it is developed
by Intel. The worst was the disassembler part of the Google Native
Client sandbox: we found that, for a large number of instructions,
operands are not decoded properly. Considering the way the sand-
box operates, we speculate that developers did not put too much
effort in the decoding of operands, since only opcodes are essential
for the purposes of the application.

The most recurring problem we observed involves the decod-
ing of instructions with multiple prefixes; the tested disassemblers

2Note that we discarded all the inputs for which the highest coef-
ficient of agreement of the outputs produced by the various disas-
semblers was smaller than 0.75. The rationale was to ignore inputs
for which it was not possible to assess with enough confidence what
was the correct result.

tend to consider instructions with exotic combination of prefixes
valid, when they are not. The general purpose instructions are typ-
ically decoded correctly by all disassemblers; instead, instructions
belonging to less commonly used instruction set extensions (e.g.,
floating-point instructions, MMX instructions, and SSE instruc-
tions) often present more problems. We also noticed that often dis-
assemblers perform a partial interpretation of the semantics of the
instruction. As an example, the semantics of some arithmetic in-
structions defines that immediate byte operands are sign-extended
to double word size. Some disassemblers automatically perform
this sign-extension. Similarly, some disassemblers omit instruc-
tion prefixes that are supposed to be ignored by the hardware CPU.
Since the goal of a disassembler is to decode instructions and its
output is used for many different purposes, such partial interpreta-
tion of the semantics of instructions can easily confuse users and
thus should not be performed.

Table 4 reports some of the defects found in the tested disassem-
blers. For example, Udis86 did not recognize the sequence of bytes
db e0 as valid. Indeed, the Intel specification does not mention
this instruction at all. However, this sequence was considered valid
by the physical CPU and by the other disassemblers, that associated
the sequence with the mnemonic opcode fneni. Ida Pro recognized
the string f6 5c 34 ae, but incorrectly decoded the displacement
field of the instruction. XED2 decoded the string 8e 0b as the in-
struction mov cs, word [ebx]. Nevertheless, a side-note in the
Intel specification precises that the code segment register cannot
be loaded with a mov instruction, and any attempt to do so should
result in an illegal instruction. Finally, the sequence d4 cd corre-
sponds to the aam instruction, that has a 8-bit immediate operand;
libopcode recognized the opcode correctly, but decoded the argu-
ment as a 32-bit value.

All the aforementioned defects could potentially be used by a
programmer to obfuscate his code, by preventing disassembly, and
impede reverse engineering attempts. Unfortunately, we observed
that even a stream of instructions generated by a well-behaved com-
piler can trigger some of the bugs we found. At this aim, we dis-
assembled all the instructions executed by Windows Media Player
9. To correctly identify the beginning of valid instructions, we exe-
cuted the program in single-step mode, and recorded the sequence
of 20 bytes pointed by the instruction pointer after each step. For
each of the tested disassemblers, we were able to find some se-
quences of bytes that were not decoded correctly. For example,
OllyDBG does not recognize the string f3 90 (i.e., the pause in-
struction), libudis86 treats the string db e2 as a fclex instruction
instead of fnclex, and libopcode treats the string 66 9d as two
separate instructions instead of one (popfw).

5. RELATED WORK
Several pieces of research work focused on developing new disas-
sembly algorithms to address the limitation of existing ones. The
various algorithms proposed typically aim at improving the cover-
age of the program and to construct more complete control flow
graphs in the presence of indirect control transfers and other subtle
situations [5, 26, 9, 27]. Other research instead investigated tech-
niques to obfuscate the machine code to impede disassembly and
reverse-engineering [19] and others again proposed algorithms to
disassembly obfuscated program [8, 18, 29].

The previous works most closely related to ours are probably
DERIVE and BinREEF [10, 30]. DERIVE uses assemblers to in-
fer information about how the operands of assembly instructions
are encoded. The goal is exactly the opposite of the goal of our
CPU-assisted instruction decoder. Indeed, our decoder aims at in-
ferring the assembly instruction encoded by a particular sequence



Disassembler Input Decoded instruction Correct result

diStorm64 26 59 invalid instruction es pop ecx

Ida Pro f6 5c 34 ae neg [esp+esi+0x52] neg [esp+esi-0x52]

libopcode d4 cd aam 0xffffffcd aam 0xcd

Native Client 0f 21 83 mov dr0,ebx (7 bytes) mov ebx,dr0

ndisasm 82 76 e5 dc invalid instruction xor byte [esi-0x1b],0xdc

OllyDBG d9 7f d2 fstcw [edi-0x2e] fnstcw [edi-0x2e]

Udis86 db e0 invalid instruction fneni

XED2 8e 0b mov cs, word [ebx] invalid instruction

Table 4: Examples of incorrectly decoded sequences of bytes

of bytes. BinREEF is a framework for evaluating decompilers, dis-
assemblers, and other code obfuscation tools. Some of the experi-
mental results described in their paper are quite qualitative, as they
are strongly connected with the experience of the reverse engineer.
Instead, in our work we propose a specific methodology to evaluate
the correctness of instruction decoders, an essential component of
disassemblers. Our results do not depend on the user’s expertise,
and testify the existence of real defects in the source code of the
instruction decoder.

In [20] we presented EmuFuzzer, a testing methodology specific
for CPU emulators, based on fuzzing. Using EmuFuzzer we have
been able to find several defects in state-of-the-art IA-32 emulators.
Some of these defects were concerning the instruction decoder em-
bedded in the CPU emulator. As we already conjectured during
Section 2, this fact testifies that any bug in the decoder might have
cascading effects on the other components of the tool. Indeed, mal-
ware developers can equip their software with specific procedures,
that exploit bugs in the instruction decoder of the emualtor, to de-
tect when they are dynamically analyzed [25].

Finally, the idea of N-version disassembly is inspired by N-version
programming [3] and N-variant systems [1, 6].

6. CONCLUSIONS
Disassemblers translate machine code into assembly instructions.
Other than being used as stand-alone tools, they are often employed
as the first link of a long chain of components that perform so-
phisticated analyses on machine code. In these situations, a bug in
the disassembler would produce cascade effects on the subsequent
modules. Disassembly is particularly challenging on a complex,
CISC architecture such as Intel x86, where the huge number of in-
struction and many subtle details make instruction decoding a very
complex task. In this paper, we described N-version disassembly,
a fully automated methodology for testing the instruction decoder
component of disassemblers. Our idea is to compare the output of
n disassemblers against each other, where one of them is a special
instruction decoder we developed, that leverages the physical CPU
to provide accurate results, while the others are off-the-shelf disas-
semblers. We demonstrated the effectiveness of our methodology
by evaluating it over 8 off-the-shelf disassemblers, finding multiple
bugs in each of them. Malicious programmers can exploit these
bugs to obfuscate their code and to thwart reverse engineering at-
tempts. Moreover, some of the bugs we found can even be triggered
by the code generated by standard compilers.
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