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ABSTRACT
Virtual machines offer the ability to partition the resources
of a physical system and to create isolated execution envi-
ronments. The development of virtual machines is a very
challenging task. This is particularly true for system vir-
tual machines, since they run an operating system and must
replicate in every detail the incredibly complex environment
it requires. Nowadays, system virtual machines are the key
component of many critical architectures. However, only lit-
tle effort has been invested to test if the environment they
provide is semantically equivalent to the environment found
on real machines. In this paper we present a methodology
specific for testing system virtual machines. This method-
ology is based on protocol-specific fuzzing and differential
analysis, and consists in forcing a virtual machine and the
corresponding physical machine to execute specially crafted
snippets of user- and system-mode code and in comparing
their behaviors. We have developed a prototype, codenamed
KEmuFuzzer, that implements our methodology for the Intel
x86 architecture and used it to test four state-of-the-art vir-
tual machines: BOCHS, QEMU, VirtualBox and VMware.
We discovered defects in all of them.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
Software testing, fuzzing, virtualization, emulation, auto-
matic test generation

1. INTRODUCTION
Virtual machine technologies have been widely and success-
fully used for the last 30 years in many contexts [32]. Practi-
cally speaking, a virtual machine is an isolated environment
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that executes software in the same way as the physical sys-
tem for which the software was developed. Virtual machines
can be classified in two main classes, according to the type
of software they execute: process virtual machines execute
an individual process, while system virtual machines execute
full operating systems. Typical usages of process virtual ma-
chines are cross-platform portability, profiling, and dynamic
binary optimization. On the other hand, typical usages of
system virtual machines are resources consolidation [1], ap-
plications provisioning, simplification of maintenance, sys-
tem integration [20], development [10], and security [2].

Virtual machines are very complex pieces of software. This
is particularly true for system virtual machines, since they
have to offer an execution environment suitable for running
a commodity guest operating system and its applications.
Thus, the most important requirement for a system virtual
machine is to replicate in every detail the execution environ-
ment found on physical machines. From a theoretical point
of view, nothing prevents to develop a virtual machine that
satisfies this requirement. However, the development of this
class of software is very challenging because of the complex-
ity of modern computer architectures and because efficiency
has become the main priority. Many researchers have in-
vested a lot of efforts in the development of new techniques
for building efficient system virtual machines. Traditionally,
system virtual machines were implemented using software
emulators that emulated the CPU and I/O peripherals. Al-
though this approach is still in use for certain applications,
modern virtual machines improve efficiency by executing na-
tively on the physical CPU part of the code of the guest.
Recently, hardware vendors have started to extend their ar-
chitectures to introduce new capabilities to facilitate virtu-
alization and to maximize the amount of guest code that
can be run natively [22]. Unfortunately only little effort has
been invested in developing specific testing methodologies
for this class of software. Since system virtual machines are
employed in a variety of critical applications and since bugs
might have very dangerous implications [35], their thorough
testing must be taken very seriously.

In this paper we propose a testing methodology specific for
system virtual machines. We extend our previous work on
this topic [18], and present a much more powerful methodol-
ogy that is independent from the technique used by virtual
machines to execute guest code. More precisely, in the past
our testing technique was specific for testing CPU emulators
(i.e., virtual machines based on CPU emulation) and limited
to the testing of emulated user-mode code. The technique
we propose in this paper can be used to test both user-



and system-mode code and thus can also be applied to CPU
virtualizers (i.e., virtual machines that rely on native code
execution). The proposed methodology is based on the as-
sumption that the CPU of a perfect virtual machine behaves
exactly as the physical CPU it simulates. Therefore, the
intent of the testing is to verify whether such assumption
holds. More precisely, our testing technique allows to dis-
cover sequences of instructions that, when executed, cause
the CPUs of the virtual and of the physical machines to
behave differently. The methodology is based on protocol-
specific fuzzing [33] and differential analysis [19]. We use
fuzzing to generate automatically input states for the test-
ing, and differential analysis to detect anomalous behaviors.
Since the expected behavior corresponds to that we observe
in the CPU of the physical machine, any difference between
the behaviors of the physical and virtual machines is clearly
anomalous, and consequenlty a symptom of a defect in the
latter.

We implemented a prototype, codenamed KEmuFuzzer,
for testing virtual machines for the Intel x86 architecture
and we used it to test four popular system virtual machines:
BOCHS [16], QEMU [3], VMWare [34], and VirtualBox [23].
The first two are based on emulation, while the others are
based on direct native execution. In all the virtual machines
we tested we found defects that lead to the corruption of
the state of the guest operating system or of its applica-
tions. The experimental evaluation testified the effective-
ness of our methodology and justified the significant effort
we made to extend it to system-mode code and CPU virtual-
izers. In conclusion, we believe KEmuFuzzer should become
an integral part of the development cycle of system virtual
machines (e.g., for automatic regression testing).

To summarize, the paper makes the following contribu-
tions.

• We propose a fully automated testing methodology,
which is based on fuzzing and differential analysis, spe-
cific for system virtual machines.

• We describe a prototype implementation for the In-
tel x86 architecture. The prototype is available as an
open-source package at http://security.dico.unimi.
it/kemufuzzer/.

• We present an extensive testing of four popular virtual
machines. Our experimental evaluation witnessed that
none of them is free from defects.

2. OVERVIEW
This section describes the approaches used in system virtual
machines to simulate the physical CPU, introduces a prop-
erty of virtual machines we called transparency to guests,
and illustrates how this property can be used for testing
virtual machines.

2.1 CPU Emulation and Virtualization
The processor of a physical machine, the host, can be pro-
grammed to run multiple guests and to give them the illusion
that they have dedicated and complete accesses to the pro-
cessor. This illusion can be realized in two ways: through
CPU emulation and through CPU virtualization.

A CPU emulator is software that simulates the execution
environment offered by the physical CPU, by emulating all
the instructions. Instructions are either emulated using in-
terpretation or just-in-time translation. They mimic in ev-
ery detail the behavior of instructions executed directly by
the physical CPU, with the exception that the former oper-
ate on the resources of the emulated execution environment,
while the latter operate directly on physical resources. The
emulated execution environment consist of: an address space
(the memory), general purpose registers and other classes of
registers (e.g., FPU and management registers).

CPU virtualizers can be viewed as very efficient emula-
tors. Indeed, when the instruction set of the guest is iden-
tical to the instruction set of the host, most of the code of
the guest can be executed directly as-is on the host1. The
trick used to natively run guest code efficiently is to execute
both user and system code of the guest on the host, in user-
mode. Emulation is then used to execute only instructions
of the system code that cannot be executed natively on the
host. The complexity and efficiency of the virtual machine
depends on the number of instructions that require emula-
tion and on the complexity of discovering them. Popek and
Goldberg formally described the characteristics an instruc-
tion set architecture (ISA) must meet to be easily and effi-
ciently virtualized [26]. They identified two special classes
of instructions, privileged and sensitive, and derived a suffi-
cient condition under which an ISA can be efficiently (and
easily) virtualized. A privileged instruction is an instruc-
tion that traps (i.e., it raises an exception) when executed
in user-mode and does not trap when executed in system-
mode. A sensitive instruction is instead an instruction that
either changes the configuration of the resources in the sys-
tem or whose behavior depends on the configuration of the
resources. The ISA is efficiently virtualizable if the set of
sensitive instructions is a subset of privileged ones. When
such a condition is met, all sensitive instructions that re-
quire emulation trap naturally, since they are privileged but
are executed in user mode. Thus, the host can intercept
them with no effort. Since the number of sensitive instruc-
tions is typically small, the complexity of the CPU emula-
tor needed on the host to handle these instructions is much
smaller than the complexity of a traditional CPU emulator
that must support the whole instruction set.

Unfortunately, the majority of ISAs do not meet the Popek
and Goldberg requirement for efficient virtualization. An
example is the Intel x86 ISA [28]2. In order to allow vir-
tualization in such an architecture all system code of the
guest must be analyzed to detect critical instructions, that
is, sensitive, but not privileged, instructions. Any block of
code containing a critical instruction must then be either
emulated or patched (to allow the host to intercept the crit-
ical instruction). Thus, the identification and handling of
critical instructions requires a complex software component
that resembles, in terms of characteristics, complexity, and
proneness to defects, a traditional CPU emulator.

1We are (ab)using the term “CPU virtualization” to explic-
itly refer to the virtualization technique also known as direct
native execution [32].
2Recently the Intel x86 ISA has been extended introducing
hardware support for virtualization (VT-x). However, in
this paper we are concerned with the testing of virtualization
techniques that do not leverage such a support.



2.2 Modeling the Behavior of the CPU
In order to present clearly the problem we are addressing it
is important to model precisely the way a CPU behaves. The
model we use was introduced in our earlier paper [18]. In the
following paragraphs we present a simplified and revisited
model that accounts for CPU virtualizers.

Given a physical CPU CP , we denote with CE a software
CPU emulator that emulates CP . Similarly, we denote with
CV a CPU virtualizer that simulates CP by executing some
code directly on the physical CPU, and by relying on an
emulator to execute privileged instructions. We use CVE to
denote the emulation module embedded in the virtualizer.
Recall that on architectures that do not meet the Popek and
Goldberg requirement for efficient virtualization, CV has to
rely on emulation, or scanning and patching, to identify and
handle critical instructions. To keep our model simple, we
consider the scanning and patching approach as a form of
emulation.

We can imagine the CPU as an abstract machine (S, δ).
The set of states S represents all the possible configura-
tions of the abstract machine. Briefly, a state, or a con-
figuration, of the machine consists in the configuration of
the CPU registers (general purpose registers, control regis-
ters, and FPU registers) and of the physical memory. The
state-transition function δ : S → S maps a machine state
s into a new state s′ by executing the instruction pointed
to by the program counter. Given a state s, the resulting
state δ(s) = s′ depends on s and on the semantics of the
instruction executed. The execution of a sequence of in-
structions can be described as the transitive closure of the
state-transition function, δ∗(s) = s′, where s′ is the state
reached after all instructions have been executed.

We denote the state-transition functions of CP , CE , and CV
respectively as δCP , δCE , and δCV . The semantics of δCP is
defined by the specification of the CPU, while the semantics
of δCE depends on how the emulator is implemented and how
it adheres to the specification of the CPU. The semantics of
δCV instead is hybrid and can be defined as follows:

δCV (s) =

{
δCP (s) for native execution,

δCVE (s) for emulated execution.

In other words, for a subset of S, the semantics of the state-
transition function of the virtualizer corresponds to that of
the physical CPU. For the remaining subset of states, the
semantics corresponds to that of the emulator embedded
in the virtualizer to handle states that do not allow native
execution. Note that, in the case of the execution of multiple
instructions, the final state δ∗CV (s) = s′ might be obtained by
switching back and forth from native to emulated execution
(e.g., δ∗CV (s) = δCP (. . . (δCVE (δCP (s))))).

This simple model of the behavior of the CPU might ap-
pear incompatible with the way traditional interrupt-driven
architectures operate. However, when the CPU disables or
ignores interrupts, the transition from one state to another
is totally deterministic.

2.3 Transparency of Virtual Machines
The ideal CPU emulator and the ideal CPU virtualizer be-
have exactly as the physical CPU. Therefore, any program
should produce the same output when executed on the phys-
ical CPU and when executed in a virtual machine. Our goal
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mov %cr0, %eax;
orl $0x40, %eax;
mov %eax, %cr0;

Figure 1: Example of lack of transparency

is to analyze system virtual machines to tell how close they
resemble the ideal one. To do that we define a property
called transparency to guests. Transparency to guests means
that guests must not be able tell if they are executed in a
virtual machine or not. In other words, CE is transparent if
the state-transition function δCE that models CE is seman-
tically equivalent to the function δCP that models CP . That
is, for each possible state s ∈ S, δCP and δCE always tran-
sition into the same state. More formally, CE satisfies the
transparency property iff:

∀s ∈ S : δCE (s) = δCP (s).

In the same way we define the transparency property for
CV ; the only difference with the previous case is that trans-
parency is implicitly assured when guest code is executed
directly on the host. Therefore, CV is transparent if:

∀s ∈ S that requires emulation : δCVE (s) = δCP (s).

Note that our definition is restricted to the transparency
with respect to the CPU and does not take into account
differences in the states that might be caused by simulated
I/O devices, since I/O devices are not part of the CPU.

Clearly, transparency is strictly related to correctness and
transparency implies the absence of defects. Figure 1 shows
a practical example of the lack of transparency, based on
a real defect we found in QEMU. The code fragment sets
a reserved bit (the sixth) of the control register cr0. The
Intel x86 reference manual states that reserved bits in cr0

preserve their value when modified [12]. As highlighted in
the figure, the CPU of the virtual machine does not com-
pletely adhere to the specification. Our goal is to use the
transparency property just defined to analyze CPU emula-
tors and virtualizers to find defects in their implementation.
It is worth noting that in the case of a traditional emula-
tor, the causes of lack of transparency are imputable totally
to software defects. On the other hand, in the case of a
CPU virtualizer, lack of transparency could also be caused
by intentional design and implementation decisions, made
to facilitate virtualization. For example, a CPU virtualizer
could make assumptions about the internals of the guest, or
could force the guest into certain configurations that allow to
minimize the complexity of the virtualizer and to minimize
performance overhead. In any case, the lack of transparency
can produce unexpected behaviors in guests.



2.4 Testing Transparency of Virtual Machines
CPU emulators and CPU virtualizers, on virtualization un-
friendly ISAs (i.e., ISAs with critical instructions), are very
complex pieces of software. Consequently, it is not that easy
to guarantee complete transparency. Indeed, our experience
has taught us that even CPU virtualizers on virtualization
friendly ISAs sometimes fail to satisfy this property. Thus,
we propose a methodology to test automatically whether
such a property is satisfied or not.

Our approach to test if an emulator CE , for the CPU CP ,
is transparent or not is based on fuzzing [21] and differen-
tial analysis [19]. We use fuzzing to generate an input state
s. Since the state space S is prohibitively large and since
many states are equivalent for the purpose of testing, the
fuzzing is protocol-specific [33]: we start from a small set
of meaningful states, and we mutate them to generate new
ones that try to exercise the largest class of corner-case be-
haviors of the CPU. Compared to traditional fuzzing, the
protocol-specific approach we are using allows to concen-
trate the efforts mostly on meaningful states.

Given an input state s, we initialize both CE and CP to
s. We resume the execution of the two CPUs and wait until
they halt. The CPUs start with executing the instruction
pointed to by the program counter (as defined in s) and
terminate the execution when an exception occurs or when
a special halt instruction is reached. Termination is guar-
anteed by s, since it is generated as a mutation of another
state that guarantees termination, using a transformation
that preserves this property. When both CPUs have ter-
minated the execution we compare the final states. If no
difference is found, δ∗CP (s) = δ∗CE (s) holds and CE is trans-
parent with respect to s. Note that we consider δ∗ instead
of δ as, depending on the input state, the testing might in-
volve the execution of more than one instruction. We use
the exact same approach to test a CPU virtualizer CV , but
we focus the efforts only on the subset of states that require
emulation.

The problem we address in this paper is by far more chal-
lenging than the one we considered in our earlier work. In
fact, in the past we focused the testing only on the behavior
of CPU emulators in user-mode. In this paper we are ex-
tending the testing to system-mode as well. As discussed in
the next section, this type of testing is much more compli-
cated from a practical point of view.

3. KEMUFUZZER
To implement the testing methodology presented in the pre-
vious section, three major challenges must be addressed.
First, in order to test the transparency of a virtual machine,
we need to execute some code in the virtual and in the phys-
ical system, and then compare the state resulting from the
execution. Unfortunately, since our approach is based on
fuzzing and since we want to test transparency in both user-
and system-mode, we might lead the physical machine into
an unusable state, from which it would be impossible to re-
gain the control without a reboot. To be able to inspect the
state of the machine at any time, we need to hold complete
control of the machine, even when fatal exceptions occur.
Second, in our previous work, we had access only to user-
mode resources and thus we assumed that the behavior of
an instruction depended only on the value of its operands.
By taking into account also system-mode resources, this as-
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Figure 2: Overview of KEmuFuzzer

sumption does not hold anymore. For example, the behavior
of an instruction that accesses the memory now also depends
on the configuration of paging, segmentation, and protection
rings. As the number of configurations that affect the behav-
ior of an instruction is significantly larger, a new technique
for test-cases generation is necessary. Third, our definition
of transparency assumes that the state-transition function
that models the behavior of the CPU is deterministic. Nev-
ertheless, asynchronous events (e.g., interrupts) make the
execution on real CPUs non-deterministic. Consequently,
we have to setup a proper execution environment that guar-
antees deterministic execution in all possible CPU modes.
In other words, all the effect of asynchronous events must
be nullified.

The details of the implementation we are going to present
are specific for Intel x86 and for testing system virtual ma-
chines. However, the implementation can be adapted to test
virtual machines for other architectures and process virtual
machines as well (e.g., by recreating the environment of the
host in which the process is run).

3.1 Architecture and Methodology
Figure 2 depicts the architecture of KEmuFuzzer, the system
we developed for testing the transparency of CPU emulators
and virtualizers for the Intel x86 architecture. KEmuFuzzer
is composed of the following modules: (i) a compiler to gen-
erate test-cases from manually written templates; (ii) a ker-
nel to bootstrap the CPU of the virtual machine and to ex-
ecute a test-case; (iii) an oracle that executes a test-case on
the physical CPU; (iv) a coordinator (not shown in the fig-
ure) to automate the process of validating the transparency
of the virtual machine for a given test-case.

Given a test-case template, we use the compiler to trans-
late the template into a stream of machine instructions. For
each compiled test-case, we generate a floppy image contain-
ing a boot-loader, the kernel, and the compiled test-case.
The floppy image is bootable and can be used to boot any
Intel x86 compatible machine, including CPU emulators and
CPU virtualizers for this architecture. We use this floppy
image to boot the virtual machine under testing. The boot
loader executes the kernel and the kernel initializes the envi-
ronment for executing the test-case. When the environment
is fully initialized, we take a snapshot of the state of the
virtual machine (s). The snapshot includes the content of
all the registers of the CPU and the content of the physical
memory. Subsequently, we start the execution of the test-
case and wait until it terminates, or a timeout occurs. At
this point we take a new snapshot of the state of the vir-



tual machine (s′E). We start the oracle and force its initial
state to s. Thus, the oracle executes immediately the test-
case, in the same exact configuration in which we previously
executed the test-case in the virtual machine. When the ex-
ecution terminates we take a snapshot of the state of the ma-
chine (s′P ). Finally, we compare s′E with s′P . Any difference
is a symptom that the virtual machine is not transparent
and consequently buggy.

3.2 Test-cases
Test-case generation is a key issue. The state space is pro-
hibitively large; it is essential to select test-cases that are
able to exercise the largest class of behaviors of the CPU
and thus to increase the completeness of the testing. More-
over, when testing CPU virtualizers, test-cases must be gen-
erated taking into account the fact that emulation is used
only for certain machine states and that it would be com-
pletely worthless to test the behavior of the virtualizer with
test-cases that are executed natively on the physical CPU.
However, it is very difficult to predict precisely which states
are handled using emulation and which are not, since that
highly depends on the implementation of the virtual ma-
chine. The approach we use to generate states for the testing
is based on protocol-specific fuzzing: we start with a state
we believe significant for the testing and then we generate
automatically new states by varying some parameters of the
initial state.

A test-case consists of a sequence of one or more instruc-
tions executed starting from a well defined state s. A test-
case can contain up to four blocks of instructions, each of
which is executed in a different privilege level, or ring. Thus,
a block of instructions can be executed in system-mode (ring
0), in user-mode (ring 3), or in any of the remaining two in-
termediate rings available on the Intel x86 architecture. The
test-case additionally defines which of these four blocks will
be executed as first by the kernel. If necessary, a block can
include instructions to switch to another ring and to execute
the instructions of the corresponding block.

Test-cases are not written manually but generated auto-
matically from templates. Templates are manually written
in assembly but can contain symbolic operators that refer to
symbols of the kernel or to generator functions that return a
set of concrete values. In our test-case templates, symbolic
operators are written in uppercase and prefixed with the
keyword KEF_. Table 1 briefly summarizes some of the oper-
ators we currently support. Templates are compiled with a
special compiler we developed. The compiler pre-processes
the assembly code to replace symbolic operators with con-
crete ones and then assembles the result (using the GNU
Assembler [8]). When test-cases are compiled, the code lo-
cated in each execution ring is always extended to include an
instruction to invoke a particular software interrupt. As dis-
cussed in Section 3.3, this instruction is used to notify that
the execution of the test-case has been completed without
any exception. A single template can be compiled into mul-
tiple test-cases, each of which differs in the concrete values
returned by the generator functions. Thus, using templates
and generator functions we can automatically test the be-
havior of the CPU in many different situations.

Figure 3 presents three sample test-case templates. Strictly
speaking, each template is an XML document. XML has
been chosen to ease the writing. The root of the docu-
ment has a child node for each of the four privilege levels

Symbolic operator Description

KEF_INTEGER(n) Generate a set of n-bit integers
KEF_ITERATE(i1,...,in) Iterate over i1,. . . ,in
KEF_BITMASK(n) Generate a n-bit bitmask
KEF_PREFIX Generate different combinations

of certain instruction prefixes
KEF_RAND_STR(n) Generate n random strings
KEF_JUMP_RING(n) Switch to ring n
KEF_PT_BASE Page table base address
KEF_RING_BASE(n) Base address of ring n
KEF_RING_CS(n) CS selector for ring n

Table 1: Examples of symbolic operators used in
test-case templates

supported by the architecture. However, child nodes with
no code can be omitted. An attribute of the root node
(start_ring) controls in which privilege level the execu-
tion begins. Figure 3(a) shows a template of a test-case
to test whether the emulated CPU is correctly decoding the
sysenter instruction and correctly interpreting its seman-
tics. The KEF_PREFIX symbolic operator refers to a gener-
ator function that returns different combination of instruc-
tion prefixes (e.g., rep, lock). The template is compiled
into multiple test-cases, each of which obfuscates the sy-

senter instruction by prepending a different combination
of prefixes. Indeed, according to the Intel x86 specifica-
tion, certain combinations of prefixes and sysenter are not
allowed (e.g., lock sysenter). Since the sysenter instruc-
tion is a user-mode instruction, but its successful execution
depends on the existence of the appropriate syscall handler,
we start with executing system-mode (ring 0) code to reg-
ister the handler, and then transfer the execution to user-
mode (ring 3). The KEF_JUMP_RING(3) symbolic operator
is replaced with a code snippet that transfers the execution
to user-mode. Figure 3(b) shows a template of a test-case
to corrupt the page table and to observe how the CPU be-
haves in such a situation. The KEF_INTEGER(n) symbolic
operator refers to a generator function that returns differ-
ent n-bit integer values. Hence, each test-case generated
starting from this template will corrupt the page table in
a different way. The symbolic operators KEF_RING_BASE(3)

and KEF_PT_BASE instead refer respectively to the base ad-
dress of the user-mode data segment and the base address
of the page table. The use of such operators renders tem-
plates completely independent from changes in the KEmu-
Fuzzer’s kernel. Finally, Figure 3(c) shows a template of a
test-case used to check whether the emulated CPU properly
enforces alignment checking. Execution starts in system-
mode, to enable hardware-assisted alignment checks, and
then switches to user-mode to perform different types of
non-aligned memory accesses. The KEF_ITERATE symbolic
operator generates test-cases that perform different types
of memory accesses (by jumping to different instructions).
Since Intel x86 specification says that alignment checking
should be enforced only in ring 3 and only for a subset of
the instructions of the instruction set, the intent of the test-
case is to test whether the emulated CPU enforces alignment
checking correctly (i.e., for the correct set of instructions and
only in user-mode). To this aim, we use the randomize_ring
attribute of the root node to specify that an execution ring
must be randomized (i.e., different test-cases are generated,



<testcase start_ring="0">
<ring0>
// Register syscall handler
...
// Jump to ring3 code
KEF_JUMP_RING(3);

</ring0>

<ring3>
// Invoke syscall
mov $0x25, %eax;
KEF_PREFIX sysenter;

</ring3>
</testcase>

(a)

<testcase start_ring="0">
<ring0>
// Load flat data segment
...
// Calculate PTE address
movl KEF_RING_BASE(3), %eax;
...do some math on %eax...
addl KEF_PT_BASE, %eax;
// Flip some bits in the PTE
movl (%eax), %ebx;
btc KEF_INTEGER(5), %ebx;
movl %ebx, (%eax);
...
// Jump to ring3 code
KEF_JUMP_RING(3);
</ring0>

<ring3>
movb $0x0, 0x0;
</ring3>

</testcase>

(b)

<testcase randomize_ring="3" start_ring="0">
<ring0>

// Set AM bit in CR0
mov %cr0, %eax;
orl $0x40000, %eax;
mov %eax, %cr0;
// Jump to ring3 code
KEF_JUMP_RING(3);

</ring0>

<ring3>
// Enable AC bit in EFLAGS
...
// Perform unaligned memory acceses
jmp KEF_ITERATE(lab1, lab2, ...);
lab1: KEF_PREFIX movb $0x0, 0x1;
lab2: KEF_PREFIX fld 0x423;
...

</ring3>
</testcase>

(c)

Figure 3: Sample test-case templates: (a) sysenter with different prefixes; (b) fuzzing of a page table entry;
(c) non-aligned memory access with alignment checks enabled.

each of which executes the current ring 3 code in a different
ring). In summary, this sample template will be compiled
in multiple test-cases: some of them will perform different
types of non-aligned memory accesses in ring 3, some others
in 1, and so on.

It is worth pointing out that KEmuFuzzer’s kernel initial-
izes the environment always in the same way. Although all
test-cases are executed starting from the same initial state
s, it is theoretically feasible to test the behavior of the CPU
in any possible state. Indeed, it is possible to set the CPU
in the desired state by embedding the appropriate code di-
rectly into the test-case. That is exactly what happens with
the three test-case templates of Figure 3. The first one regis-
ters a custom syscall handler, the second one alters the page
table entry that corresponds to the base address of the user-
mode data segment, and the third one enables alignment
checking.

3.3 Kernel
KEmuFuzzer uses a custom kernel we developed, to boot-
strap the environment in which test-cases are executed. More
precisely, the kernel is responsible for initializing the CPU
in the execution mode target of the testing (e.g., 32-bit pro-
tected mode with paging enabled), for starting the execu-
tion of the test-case, and for notifying the virtual machine
when bootstrap is completed and when the execution of the
test-case is terminated. The kernel is optimized to minimize
bootstrap time and to minimize memory usage. Currently
our kernel boots in less than half a second and requires less
than 4Mb of physical memory to run.

The kernel communicates with the virtual machine and
with the oracle through a specific hardware I/O port; we
call this port the notification port. We use this trick to
request the virtual machine and the oracle to dump the cur-
rent machine state to a file. Further details about how this
is done are given in Section 3.4 and 3.5.

Figure 4 shows the memory layout at the end of bootstrap
and just before the execution of a test-case. The following
details about the kernel are specific for initializing the In-
tel x86 CPU in 32-bit protected mode with paging enabled.
However, with minimal modifications the kernel can initial-

ize the environment in other modes of operation (e.g., virtual
mode, long mode, protected mode with physical address ex-
tension). The kernel starts by enabling protected mode and
configuring the Programmable Interrupt Controller (PIC).
Subsequently, the kernel initializes the Global Descriptor Ta-
ble (GDT). For each of the four protection rings we create
a task, and for each task we create a segment, of 4Kb, to
hold simultaneously the code, the data, and the stack of the
task. The stack occupies the second half of the segment.
The kernel uses segmentation to prevent a test-case from
accidentally corrupting its main memory. The kernel subse-
quently configures and enables paging. The page directories
and the page tables are initialized such that memory address
translation is an identity function: the virtual address a is
translated to the physical address a. The reason for such a
configuration is to simplify the analysis of the machine state.
The dumps of the state we produce include the content of
the entire physical memory. Therefore, such a page mapping
allows us to inspect the virtual memory with no effort. After
paging has been enabled, the kernel initializes the Interrupt
Descriptor Table (IDT) by registering special exception and
interrupt handlers. Exception handlers write a command to
the notification port to signal the occurrence of an excep-
tion and to request dump of the state; after the notification
they halt the CPU. Interrupt handlers instead immediately
resume normal execution, by executing the iret instruction.
This approach guarantees a deterministic execution, because
unpredictable asynchronous interrupts do not alter the state
of the machine. The kernel also configures a special inter-
rupt handler (interrupt 31) that is used to notify the end of
the execution of the test-case without any exception. Like
exception handlers, this interrupt handler writes a command
to the notification port to request a dump of the state and
then halts the CPU. This handler is invoked directly by test-
cases. When test-cases are compiled, the compiler appends
at the end of the sequence of instructions of each ring an
extra instruction to trigger a software interrupt and invoke
this special handler (see Section 3.2). After the IDT has
been configured, the kernel enables interrupts. After that,
the kernel writes a command to the notification port, to no-
tify the end of the bootstrap and to request a dump of the
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Figure 4: Memory layout of the environment used to execute test-cases

machine state. Finally, the kernel starts the execution of the
test-case, through a task switch.

As mentioned before, the test-case is executed into a sep-
arate task. It is worth pointing out that, since the test-case
can also contain additional initialization code, the memory
layout of the environment can be further modified directly
from the test-case, thus allowing to test the virtual machine
in virtually any possible state. Even though segmentation
is used to prevent access to sensitive memory locations from
within the test-case, system-mode instructions of the test-
cases can be used to remove segment limits, to grant access
to all memory locations, and subsequently to configure the
CPU in the desired state. Our test-case compiler provides a
special symbolic operator for facilitating this operation.

The test-cases are embedded directly into the kernel: we
create multiple copies of the kernel and in each copy we
embed a different test-case. The kernel’s executable con-
tains four placeholder sections, corresponding to the code
segments of the four rings (see Figure 4). We overwrite
the content of these sections with the code of the test-case.
Moreover, we patch the instruction used to start the execu-
tion of the test-case, to start executing in the desired ring.

3.4 CPU Emulators and Virtualizers
To execute a test-case in a virtual machine we simply boot it
using the floppy image containing the boot loader, the kernel
and the test-case. This approach works very well since all
virtual machines we are aware of support booting from a
floppy. When bootstrap is completed and after test-case
execution terminates, the kernel alerts the virtual machine
through the notification port. The virtual machine must
intercept the request and dump the current state to a file.

If the source code of the virtual machine is available, the
addition of such a functionality is quite simple. The ap-
proach we use, and suggest, is to register a new virtual hard-
ware device and to associate it with the I/O port used by
the kernel for notification. Typically, virtual machines pro-
vide an API to create new virtual devices. When the ker-
nel writes a command on the notification port, the virtual
machine suspends the execution of the guest and delivers
the command to the device. The device has direct, or in-
direct, access to the internal state of the machine and can
dump the state to a file. Obviously the complexity of this

task varies from one virtual machine to another. For exam-
ple, BOCHS offers a rich instrumentation API to intercept
events (e.g., exceptions, interrupts, I/O) and to inspect the
state of the guest. On the other hand, QEMU and Virtual-
Box do not provide an instrumentation API. Nevertheless,
it is still quite easy to add a new device driver and to dump
the state of the CPU. The only precaution is to ensure that
the state of the guest visible from the device is in sync with
the effective state.

If the source code of the virtual machine is not available,
the use of the debugging interface of the virtual machine
is the only viable alternative. We used this approach with
VMware. Kernel notification can be detected using break-
points, set on I/O instructions used for the notifications.
The state of the guest can instead be inspected and dumped
using the appropriate commands of the debugger. The draw-
back of this approach is that the debugging interface is typ-
ically interactive and very slow. Moreover, the debugger
might not expose completely the internal state of the guest.
In such a situation, the kernel must be modified to store
in memory the state of the registers that are not accessible
from the debugger.

3.5 Oracle
The ideal oracle is the physical CPU. We should perform
the testing by either booting and running the test-case on a
real machine using a floppy or the network. Unfortunately,
this approach is not practical for two reasons. First, we
need to dump the state s′ resulting from the execution of
the test-case to compare it with the state obtained in the
virtual machine. Practically speaking, that means that the
kernel used to bootstrap the environment and to execute the
test-case must be able to interact with a device (e.g., a disk
or a network card) to dump the state of the CPU. To do
that, the kernel must include the appropriate device driver.
Second, test-cases are specifically crafted to exercise a large
class of behaviors of the CPU, including bringing it into
invalid states to see how it reacts. Therefore, some test-cases
might render the CPU completely unusable. For example,
the processor might enter an infinite loop that prevents the
kernel from regaining the control of the execution, or the
kernel might get corrupted and unable to dump the state of
the machine. In conclusion, the oracle based on the näıve



use of the physical CPU, besides requiring a much more
complex kernel, is also not suited for automatic testing with
tens of thousands of test-cases: there exist certain situations
in which it is not possible to dump the state of the machine
or in which manual intervention is needed (e.g., to reset
physically the CPU).

For these reasons, the oracle we use is based on a hardware-
assisted virtual machine. At first sight this choice might ap-
pear to contradict our initial claims and our goal. After all,
we are proposing to find bugs in a virtual machine using
another type of virtual machine. In the next paragraphs we
will show that this approach is instead very easy to imple-
ment, and that specific assumptions about the peculiar type
of guest we need to execute allow us to develop a hardware-
assisted virtual machine which is functionally equivalent to
the ideal oracle previously described.

Our oracle leverages Intel technology for hardware as-
sisted virtualization, namely VT-x [22]. By using hardware-
assisted virtualization, we can observe the execution of the
test-case on the physical CPU without losing the ability
to interrupt the execution and to inspect the state of the
CPU at any time, even when it enters invalid states. In-
tel VT-x technology transforms Intel x86 (and x86-64) ISA
into something much more virtualization-friendly than a ISA
that meets Popek and Goldberg minimal requirement for
efficient virtualization. Besides not having any critical in-
struction, VT-x allows to configure dynamically which in-
structions must trap and in which conditions. Furthermore,
VT-x includes a new mode of operation (VMX), that essen-
tially adds new higher privilege rings for running the virtual
machine monitor, that is, the software component the host
uses to manage guests. The introduction of these new rings
allows a clear separation between host and guests, which is
not invasive for guests. Indeed, system code of the guest
is executed natively on the CPU, in system-mode. Nev-
ertheless, the host still needs to assume the control of the
guest in certain situations (e.g., to redirect I/O operations
to devices emulated via software). Clearly, the challenge is
to develop a minimalistic software component for the host,
that is sufficiently sophisticated to execute a test-case and
to hold complete control of the execution, but that is also
simple enough to be verifiable.

The aim of the oracle is solely to execute a particular test-
case in a particular state of the CPU. In light of that, the
virtual machine monitor can be drastically simplified. In-
stead of booting the kernel in the oracle, we can initialize
manually the state of the oracle by loading s, the state of
the virtual machine at the end of the bootstrap and that
precedes the execution of the test-case. This approach has
two major benefits. First, by initializing the state of the
oracle to s we have the guarantee that the state obtained at
the end of the execution of the test-case is not polluted by
some differences introduced during bootstrap. Second, the
bootstrap requires to execute real-mode instructions (that
require emulation even with VT-x) and to communicate with
I/O devices (e.g., to initialize them and to load the kernel).
By avoiding to bootstrap the execution environment in the
oracle, the complexity of the virtual machine monitor re-
duces drastically. In fact, the virtual machine monitor does
not need to emulate real-mode instructions and does not
need to emulate any I/O device.

Our oracle is based on a stripped down version of KVM
(Kernel-based Virtual Machine) [14], a virtual machine mon-
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itor for GNU/Linux. KVM architecture is very simple be-
cause it runs only on processors with hardware support for
virtualization. We have further simplified its architecture
making specific assumptions about the peculiar type of guest
we need to run. KVM exposes to the programmer an in-
terface (/dev/kvm) to create and manage virtual machines.
More precisely, this interface allows to read and write the
values of all the registers of the CPU, including FPU and
control registers, and to read and write the physical mem-
ory of the guest. Using this interface we can create a virtual
machine that is already initialized and ready to execute a
test-case. Roughly speaking, we can create a virtual machine
and initialize it to the state (s) preceding the execution of
the test-case. Thus, when we start the virtual machine, the
test-case is immediately executed. KVM also allows to in-
tercept and emulate I/O operations. Our stripped down ver-
sion of KVM simply terminates the execution of the guest at
the first I/O operation. This approach has two advantages.
First, we can easily identify and ignore test-cases whose fi-
nal state might be polluted by the interaction with devices
external to the CPU. Second, the component for I/O emu-
lation is by far the most complex component of the virtual
machine monitor. By interrupting a test-case at the first
I/O operation we have the guarantee that a potential defect
in the component for I/O emulation will not influence the
results of our oracle.

Figure 5 shows the architecture of our oracle based on
hardware-assisted virtualization. The core of the oracle is a
small virtual machine monitor (VMM), based on KVM, that
runs in root-mode, the new mode introduced in VT-x to run
virtual machines without segregating guests to user-mode.
This component is responsible for running and controlling
the guest and can intercept certain guest’s operations. As
described in the previous paragraph, our virtual machine
monitor minimizes the number of guest’s operations that
are intercepted. The oracle also consists in a user-space
controller that is run on the host and that communicates
with the virtual machine monitor. The controller is used to
instantiate virtual machines and to dump the state of the
guest. Clearly, we cannot formally prove that our oracle is
equivalent to the ideal one. However, we have thoroughly
inspected the code of our minimalistic virtual machine mon-
itor, and we have verified that the defects we found during
the evaluation are not imputable to defects in the oracle.



4. EVALUATION
We used KEmuFuzzer to test four virtual machines: two
CPU emulators (BOCHS and QEMU) and two CPU vir-
tualizers (VMware and VirtualBox). None of the virtual
machines was found to be completely transparent to guests.

4.1 Experimental Setup
The evaluation of our testing methodology was performed

using an Intel Core2 Duo (3.00GHz) machine, running De-
bian GNU/Linux, with kernel 2.6.31 (64-bit version). The
physical processor supported the following features: MMX,
SSE, SSE2, SSE3, SMX, and VT-x. We tested the following
versions of the virtual machines: BOCHS CVS (7th October
2009), QEMU 0.11.0, VirtualBox OSE 3.0.8, and VMware
Workstation 7.0. For the two CPU virtualizers, we disabled
the support for hardware-assisted virtualization since our
goal was to test traditional CPU virtualizers that do not
leverage such technology.

4.2 Test-cases
We manually wrote 67 test-case templates, that were com-
piled into 1915 test-cases. The number of test-cases gener-
ated from each template depended on the type and number
of symbolic operators used in the template. We roughly
classified the test-case templates in the categories shown
in Table 2. Templates in the “privileged instructions” cat-
egory consist in privileged instructions that are executed
in multiple privilege levels, usually with different combi-
nations of prefixes. The intent of this class of test-cases
was to test whether the CPU of the virtual machine imple-
ments instruction decoding and privilege checks correctly.
The test-case templates belonging to the “control registers”
category manipulate CPU control registers (e.g., cr0 and
cr4) to alter the execution mode of the CPU and some re-
served bits. A significant percentage of the hand-written
test-case templates instead belong to the “memory manage-
ment” category. These test-cases alter the configuration of
several memory-management structures (e.g., page tables,
segment descriptors) to test how the CPU of the virtual
machine responds to abnormal configuration of the memory
management unit. The “control transfers” category includes
test-cases that modify the execution flow through control
transfer instructions or privilege switches. The “FPU ” cate-
gory encompasses test-cases that affect the operating mode
of the floating-point unit (e.g., wait and emms). We inten-
tionally did not test general-purpose floating-point instruc-
tions, as CPU virtualizers typically execute them natively.
The category called “random” includes a template to gener-
ate sequences of random instructions and to execute them
in system-mode. We also wrote other types of test-cases
that do not fit any of the aforementioned categories. These
test-cases are included in the category called “others”.

We extended the set of manually-written templates with
other automatically generated templates using the method,
called “CPU-assisted test-case generation”, we presented in
our earlier paper. Briefly, this method uses directly the CPU
to explore the instruction set and to identify the format of
the instructions. We used this information to generate a
set of test-cases that covers the large majority of the in-
struction set, while minimizing redundancy. Each of the

templates generated with this approach executed a different
instruction, in system-mode.

4.3 Experimental Results
Table 2 shows the results of our evaluation. Table 3 instead
shows the average test-case execution time and the time-
out on test-case execution time. For each virtual machine,
Table 2 reports the number of test-case templates and the
number of compiled test-cases for which we observed a non-
transparent behavior. The numbers in the table witness that
our initial claim, that complete transparency to guests is dif-
ficult to achieve, was correct. Indeed, no virtual machine was
found to be completely transparent and thus free of defects.
Moreover, as described later, the results of the evaluation
show that, by extending the testing to system-mode, we are
able to detect a broader class of defects that would have not
been detected with sole user-mode testing. The numbers in
the table also show the effectiveness of the protocol-specific
fuzzing approach we used to generate test-cases. In many
cases, only few of the test-cases generated from the same
template triggered a defect. It is worth pointing out that
the gravity of the defects we found varies from case to case.
Some of the defects we found are very serious. Others in-
stead should not negatively affect the execution of popular
guests (e.g., GNU/Linux and Microsoft Windows); however,
less popular guests might fail to work properly. Few differ-
ences we found are instead not directly imputable to bugs in
the virtual machine, but rather to “undefined” corner-case
behaviors (e.g., the Intel x86 specification does not define
the value of some status flags for certain arithmetical and
logical operations). Nevertheless, guests could still rely on
such undefined, but deterministic, behaviors to detect if they
are executed in a real or in a virtual machine [25, 29].

In the following paragraphs we briefly describe the de-
fects we found in the tested software. In several situations
we noticed non-transparent behaviors, regardless of the in-
structions being executed. As an example, some virtual ma-
chines never update GDT entries when accessed; others, al-
ways present some discrepancies in the state of the FPU. We
decided to manually exclude these omnipresent differences
from the tally to have more significant results. We are cur-
rently in touch with the developers; some of the defects we
have found have already been acknowledged and patched.

4.3.1 BOCHS
The emulator is fairly perfect. Indeed, the authors stated
that each release is preceded by a testing cycle using a
methodology very similar to the one we proposed in our
earlier paper. Nevertheless, we were able to found some un-
known defects. For example, we found that the instructions
used for fast system call invocation (e.g., sysenter and sy-

sexit) corrupt an attribute (i.e., the type) of the code seg-
ment. According to the Intel x86 manual, when one of these
instructions is executed, the type of the code segment should
be set to “read/write” and “accessed”. BOCHS erroneously
marked the segment as non accessed. The defect was con-
firmed by the authors, and corrected in the latest versions of
the emulator. The behavior of the bswap instruction, when
it references a 16-bit register, is also non transparent. The
Intel reference states the behavior of the instruction is un-
defined when it is executed with 16-bit operands. This is an



Category BOCHS QEMU VirtualBox VMware
Description Templ. Test-cases Templ. Test-cases Templ. Test-cases Templ. Test-cases Templ. Test-cases

Privileged instructions 9 161 1 1 5 45 1 1 1 1
Control registers 7 181 1 2 6 85 5 75 1 1
Memory management 25 418 7 17 12 67 10 44 13 45
Interrupts/exceptions 9 39 2 2 7 17 5 5 0 0
Control transfer 4 45 1 6 3 35 3 35 3 35
FPU 3 3 0 0 0 0 0 0 0 0
Others 9 44 2 2 3 14 2 2 0 0
Random 1 1024 1 45 1 505 1 437 1 59

CPU-assisted 2703 2703 7 7 302 302 291 291 51 51

Total 2770 4618 22 82 339 1070 318 890 70 192

Table 2: Results of the evaluation

artifact of our testing methodology and cannot be properly
considered a real defect of the emulator.

4.3.2 QEMU
We found several defects in QEMU. The most serious one
causes a crash of the emulator. More precisely, we found that
the emulator is not able to handle hardware breakpoints set
on instructions in a memory segments with non-null base ad-
dress. When such a breakpoint is hit, the emulator crashes.
Another debug-related defect we found is that the emula-
tor never sets the “resume flag” on exception. Since this
flag is used to temporarily disable debug exceptions from
being generated for instruction breakpoints, the emulator
could enter an infinite loop. We also found that the emula-
tor never marks GDT entries as accessed, raises the wrong
exception for memory accesses beyond segment limits, and it
does not support hardware-assisted alignment checking. Fi-
nally, we found that some general purpose instructions are
not properly decoded and that several illegal combinations
of prefixes and system-mode opcodes are considered valid
and executed.

4.3.3 VirtualBox
VirtualBox handles critical instructions using both emula-
tion and scanning and patching. Scanning and patching
is used to virtualize the execution of code fragments that
are frequently emulated. VirtualBox’s emulation module is
based on QEMU. During the testing, VirtualBox never en-
tered native execution mode. We inspected the source code
and found that native execution mode was inhibited by the
configuration of our execution environment. We modified
our kernel to meet this requirement and came across an-
other and more serious problem: VirtualBox crashed on any
attempt to enter native execution mode. The crash is obvi-
ously a symptom of lack of transparency. We speculate that
VirtualBox makes specific assumptions about the guest and
that our guest violates them. We decided to use the original
kernel for the testing. In conclusion all the defects we found
in VirtualBox are real and a subset of the defects we found in
QEMU. However, some of them might not be reproducible
with guests that do not trigger the earlier described bug.

4.3.4 VMware
Like BOCHS, VMware presented just few defects. In mul-
tiple test-cases we observed that the ret and retn instruc-
tions, used to return from function calls, are not properly
emulated. Indeed, the virtual machine corrupts the state of

BOCHS1 QEMU1 VirtualBox1 VMware2 Oracle1

3.01s 0.74s 2.47s 25.78s 0.83s

Table 3: Average test-case execution time (timeout
on test-case execution time was: 10s1 and 40s2)

the guest if an exception is raised during the return from a
function. We also found that accessed entries of the GDT
and accessed entries of the page table are not marked as
such.

5. RELATED WORK
Fuzz-testing has been proposed by Miller et al. in 1990 [21],
but it is still widely used for testing different types of ap-
plications. However, pure random fuzzing cannot guaran-
tee a reasonable code coverage in case of applications that
require a particular format of the input (e.g., a XML doc-
ument or a well formed Java program). For this reason,
several protocol-specific fuzzing techniques have been devel-
oped that leverage domain-specific knowledge [6, 13, 33].
Another approach consists in building constraints that de-
scribe what properties are required for the input to trigger
the execution of particular program paths, and then use a
constraint solver to find inputs with these properties [5, 9,
30, 17].

The idea of detecting software defects by comparing the
behavior of two or more software components for the same
input is known as differential testing [19]. Differential testing
has previously been used in a variety of contexts, including
computer security [4], flash file systems [11], and grammar-
driven functionality [15]. In [31] a technique based on dif-
ferential analysis is used for testing Java Virtual Machines
(JVMs). The idea is to feed the same test-case to different
JVM implementations and to compare their output. Simi-
larly to our test-case templates, they apply random mutators
to perturb a meaningful input.

System virtual machines are widely used in computer se-
curity. One of their major applications is the dynamic anal-
ysis of malicious programs. Researchers have invested a lot
of efforts to analyze state-of-the-art virtual machines to de-
tect non-transparent behaviors that can be used to detect
dynamic analysis attempts [7, 24, 27, 29]. All the non-
transparent behaviors detected using our testing method-
ology could be used for such a purpose [25].



6. CONCLUSIONS
We presented an automated methodology for testing system
virtual machines. The proposed methodology can be used
to test their correctness at executing both user- and system-
mode code, and applies to virtual machines based on emula-
tion and on native execution. We implemented a prototype
for the Intel x86 architecture, codenamed KEmuFuzzer, and
used it to test four state-of-the-art virtual machines. We
discovered multiple defects in all of them. We believe KE-
muFuzzer should become an integral part of the development
cycle of system virtual machines. In the future we plan to
extend the testing to all possible mode of operations of the
CPU (e.g., virtual 8086 mode and real mode) and to inves-
tigate the applicability of our methodology to fully-featured
hardware-assisted virtual machines.
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