
Testing CPU Emulators

Lorenzo Martignoni†‡ Roberto Paleari† Giampaolo Fresi Roglia† Danilo Bruschi†

Dipartimento di Fisica‡
Università degli Studi di Udine

Udine, Italy
lorenzo.martignoni@uniud.it

Dipartimento di Informatica e Comunicazione†
Università degli Studi di Milano

Milano, Italy
{roberto,gianz,bruschi}@security.dico.unimi.it

ABSTRACT
A CPU emulator is a software that simulates a hardware
CPU. Emulators are widely used by computer scientists for
various kind of activities (e.g., debugging, profiling, and mal-
ware analysis). Although no theoretical limitation prevents
to develop an emulator that faithfully emulates a physical
CPU, writing a fully featured emulator is a very challeng-
ing and error-prone task. Modern CISC architectures have a
very rich instruction set, some instructions lack proper spec-
ifications, and others may have undefined effects in corner-
cases. This paper presents a testing methodology specific for
CPU emulators, based on fuzzing. The emulator is“stressed”
with specially crafted test-cases, to verify whether the CPU
is properly emulated or not. Improper behaviours of the
emulator are detected by running the same test-case con-
currently on the emulated and on the physical CPUs and
by comparing the state of the two after the execution. Dif-
ferences in the final state testify defects in the code of the
emulator. We implemented this methodology in a proto-
type (codenamed EmuFuzzer), analysed four state-of-the-art
IA-32 emulators (QEMU, Valgrind, Pin and BOCHS), and
found several defects in each of them, some of which can
prevent the proper execution of programs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
Software testing, fuzzing, emulation, automatic test genera-
tion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’09, July 19–23, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-338-9/09/07 ...$10.00.

1. INTRODUCTION
In Computer Science, the term “emulator” is typically

used to denote a software that simulates a hardware sys-
tem [15]. Different hardware systems can be simulated: a
device [10], a CPU (Pin [16], and Valgrind [24]), and even an
entire PC system (QEMU [2], BOCHS [14], and Simics [17]).
Emulators are widely used today for many applications: de-
velopment, debugging, profiling, security analyses, etc. For
example, the NetBSD AMD64 port was initially developed
using an emulator [23].

The Church-Turing thesis implies that any operating en-
vironment can be emulated within any other. Consequently,
any hardware system can be emulated via software. Despite
the absence of any theoretical limitation that prevents the
development of a correct and complete emulator, from the
practical point of view, the development of such a software
is very challenging. This is particularly true for CPU emu-
lators, emulators that simulate a physical CPU. Indeed, the
instruction set of a modern CISC CPU is very rich and com-
plex; therefore, the corresponding software implementation
will unlikely be bug-free. Moreover, the official documenta-
tion of CPUs often lacks the description of the semantics of
certain instructions in certain corner cases and sometimes
contains inaccuracies (or ambiguities). Although several
good tools and debugging techniques exist [22], developers
of CPU emulators have no specific technique that can help
them to verify whether their software emulate the CPU by
following precisely the specification of the vendors. As CPU
emulators are employed for a large variety of applications,
defects in their code might have cascade implications. Imag-
ine, for example, what consequences the existence of any
defect in the emulator used for porting NetBSD to AMD64
would have had on the reliability of the final product.

Assuming that the physical CPU is correct by definition,
the ideal CPU emulator mimics exactly the behaviour of
the physical CPU it is emulating. On the contrary, the be-
haviour of an approximate emulator deviates, in certain situ-
ations, from the behaviour that one would have on the physi-
cal CPU. Some examples of the deviations we found in state-
of-the-art emulators are reported in Table 11. As an ex-
ample, let us consider the instruction add $0x1,0x0(%eax),
which adds the immediate 0x1 to the byte pointed by the
register eax. Assuming that the original value of the byte is
0xcf, the execution of the instruction on the physical CPU,
and on three of the tested emulators, the value of the byte is

1In this paper we use IA-32 assembly and we adopt the
AT&T syntax.

Instruction IA-32 QEMU Valgrind Pin BOCHS

lock fcos illegal instr. lock prefix ignored no diff. no diff. no diff.

int1 trap no diff. illegal instr. no diff. general protection fault

fld1 fpuip = eip fpuip = 0 fpuip = 0 FPU virtualised no diff.

add $0x1,0x0(%eax) 0x0(%eax) = 0xd0 0x0(%eax) = 0xcf no diff. no diff. no diff.

pop %fs %esp = 0xbfdbb108 no diff. no diff. %esp = 0xbfdbb106 no diff.

pop 0xffffffff %esp = 0xbffffe44 no diff. no diff. no diff. %esp = 0xbffffe48

Table 1: Examples of instructions that behave differently when executed in the physical CPU and when
executed in an emulated CPU (that emulates an IA-32 CPU). For each instruction, we report the behaviour
of the physical CPU and the behaviour of the emulators (differences are highlighted).

set to 0xd0. In QEMU, instead, the value is not updated cor-
rectly for a certain encoding of the instruction. Many other
examples of problematic instructions are known already [7,
25, 26, 27, 29]. Our goal is to develop an automatic tech-
nique to discover deviations between the behaviour of the
emulator and of the physical CPU it is emulating, caused
by defects in the emulation code. We are not interested in
deviations that lead only to internal differences in the state
(e.g., differences in the state of CPU caches), because these
differences are not visible to the programs running inside
the emulated environment. Indeed, no instruction allows to
observe such internal state and consequently the execution
of emulated programs cannot be influenced.

In this paper we present a fully automated testing method-
ology for CPU emulators, based on fuzzing [21]. The pro-
posed methodology can be used to discover automatically
configurations of the environment (i.e., state of the CPU
registers and content of the memory) that cause different
behaviours in the emulated and in the physical CPUs. To
test an emulator we generate a large number of test-cases
(i.e., configurations of the environment) and run these test-
cases on both the emulated and the physical CPU. Then,
we compare the configuration of the two environments at
the end of the execution of each test-case; any difference is a
symptom of an incorrect behaviour of the emulator. Given
the unmanageable size of the test-case space, we adopt two
strategies for generating test-cases: purely random test-case
generation and hybrid algorithmic/random test-case gener-
ation. The latter guarantees that each instruction in the
instruction set is tested at least in some selected execution
contexts.

We have implemented this testing methodology in a pro-
totype for IA-32, codenamed EmuFuzzer, and used this pro-
totype to test four state-of-the-art emulators: BOCHS[14],
QEMU[2], Pin[16], and Valgrind[24]. Although Pin and Val-
grind are dynamic instrumentation tools, their internal ar-
chitecture resembles, in all details, the architecture of tra-
ditional emulators and therefore they can suffer the same
problems. We found several deviations in the behaviours
of each of the four emulators, some of which represent se-
rious defects that might prevent the proper execution of
the emulated programs. For example, we have discovered
instructions that can freeze QEMU, instructions that are
not supported by Valgrind and thus generate exceptions,
and instructions that are executed by Pin and BOCHS but
that cause exceptions on the physical CPU. The results ob-
tained witness the difficulty of writing a fully featured and
specification-compliant CPU emulator, but also prove the
effectiveness and importance of our testing methodology.

To summarise, the paper makes the following contribu-
tions:

• a fully automated testing methodology, based on fuzz-
testing, specific for CPU emulators;

• an optimised algorithm for test-cases generation that
systematically explores the instruction set, while min-
imising redundancy;

• a prototype implementation of our testing methodol-
ogy for IA-32 emulators;

• an extensive testing of four IA-32 emulators that re-
sulted in the discovery of several defects in each of
them, some of which represent serious bugs.

The paper is organised as follows. Section 2 introduces for-
mally the notion of faithful emulation. Section 3 describes
in detail our algorithms for test-cases generation and how
test-cases are run to detect if an emulator is not emulating
faithfully the CPU. Section 4 evaluates our methodology by
presenting the results of the testing of four CPU emulators.
Section 5 discusses limitations and future work. Finally,
Section 6 presents the related literature and Section 7 con-
cludes.

2. OVERVIEW
This section describes how CPU emulators work, presents

our notion of faithful emulation of a physical CPU, and
sketches the idea behind our testing methodology.

2.1 CPU Emulators
With the term CPU emulator we refer to a software that

simulates the execution environment offered by a physical
CPU. The execution environment consists of: an address
space (the memory), general purposes registers, other classes
of registers (e.g., FPU and management registers), and op-
tionally I/O ports. The CPU emulator emulates a program
by executing each instruction in the emulated execution en-
vironment. Instructions are typically executed using either
interpretation or just-in-time translation. Emulated instruc-
tions mimic in every detail the behaviour of instructions exe-
cuted directly by the physical CPU, with the exception that
the former operates on the resources of the emulated execu-
tion environment, while the latter operates on the resources
of the physical execution environment.

The execution environment can be properly emulated even
if some internal components of the physical CPU are not
considered (e.g., the instruction cache): as these components
are used transparently by the physical CPU, no program can

access them. Similarly, emulated execution environments
can contain extra, but transparent, components not found
in hardware execution environments (e.g., the cache used to
store translated code).

2.2 Faithful CPU Emulation
Given a physical CPU CP , we denote with CE a software

CPU emulator that emulates CP . Our ideal goal is to au-
tomatically analyse CE to tell whether it faithfully emulates
CP . In other words we would like to tell if CE behaves equiva-
lently to CP , in the sense that any attempt to execute a valid
(or invalid) instruction results in the same behaviour in both
CP and CE .

To define how code is executed by a CPU we model the
CPU with an abstract machine. A state of the abstract ma-
chine, s ∈ S, consists of the program counter pc, the state
of the CPU registers R, the state of the memory M , and the
exception state E. For conciseness, we represent the state of
the abstract machine with the tuple s = (pc,R,M,E). The
CPU registers state R is a total mapping from CPU regis-
ters to their value. The memory state M is a total mapping
M : A → [0 . . . 255] of memory addresses to 1-byte memory
values, where A = [0 . . . 2N − 1] is the set of memory ad-
dresses, and N is the number of bits used by the CPU for
memory addressing. The program counter pc ∈ A ∪ {halt}
can refer any memory address; halt is a special address
used to denote the termination of the execution. We as-
sume no distinction between code and data; thus any mem-
ory location can potentially be executed. Finally, the ex-
ception state E ∈ {⊥, illegal instruction, division by zero,
general protection fault , . . .} denotes the exception that oc-
curred during the execution of the last instruction; the spe-
cial exception state ⊥ indicates that no exception occurred.

The abstract machine that models the CPU is a transi-
tion system (S, δ). The state-transition function δ : S → S
maps a CPU state s = (pc,R,M,E) into a new state s′ =
(pc′, R′,M ′, E′) by executing the current instruction at pc.
The transition function δ is defined as follows:

δ(pc,R,M,E)
def
=

8><>:
(pc,R,M,E) if pc = halt ∨ E 6=⊥,

(pc,R,M,E′) if an exception occurs,

(pc′, R′,M ′,⊥) otherwise.

If the program counter points to a valid instruction and
the execution of that instruction does not raise any excep-
tion, then δ(pc,R,M,E) = (pc′, R′,M ′,⊥). The state of
the registers R′ and of the memory M ′ are updated ac-
cording to the semantics of the executed instruction, the
program counter pc′ points to the next instruction, and
E′ =⊥. On the other side, if an exception occurs, then
δ(pc,R,M,E) = (pc,R,M,E′), with E′ 6=⊥. An exception
indicates that the instruction cannot be executed and, con-
sequently, the program counter, the CPU registers, and the
memory remain unvaried. When the last instruction is ex-
ecuted, the program counter is set to halt, and from that
point on the state of the environment is not updated any-
more. The same applies after an exception has occurred.

Having formalised how the CPU executes code, we can
now define what it means for CE to be a faithful emulator
of CP . Intuitively, CE faithfully emulates CP if the state-
transition function δCE that models CE is semantically equiv-
alent to the function δCP that models CP . That is, for each
possible state s ∈ S, δCP and δCE always transition into the

same state. More formally, CE faithfully emulates CP iff:

∀ s ∈ S : δCP (s) = δCE (s).

2.3 Fuzzing CPU Emulators
Obviously, proving that CE faithfully emulates CP is in-

feasible because of the unmanageable number of states that
would have to be tested. For this reason, instead of try-
ing to prove that CE faithfully emulates CP , we relax our
goal and try to prove the opposite. That is, we search for
an execution state s̄ ∈ S that demonstrates that CE does
not faithfully emulates CP . More formally, CE unfaithfully
emulates CP iff:

∃ s̄ ∈ S : δCP (s̄) 6= δCE (s̄).

Because we assume CP to be correct, the existence of such
a state testifies the existence of a defect in CE .

Our approach to detect if CE is not a faithful emulator of
CP is based on fuzzing. We generate a synthetic state (or
test-case) s = (pc, R, M , ⊥) and we set the state of both
CP and CE to s. Then we execute the instruction pointed
by pc in both CP and CE . At the end of the execution of the
instruction, we compare the resulting state. If no difference
is found, then δCP (s) = δCE (s) holds. On the other hand,
a difference in the final states proves that δCP (s) 6= δCE (s)
and therefore that CE does not faithfully emulate CP .

Figure 1 shows an example of our testing methodology
in action. We run two different test-cases, namely s and
s. To ease the representation, in the figure we report only
the meaningful state information (three registers and the
content of few memory locations) and we represent the pro-
gram counter by underling the instruction it is pointing to.
Furthermore, when the states of the two environments do
not differ, we graphically overlap them. The first test-case s
(Figure 1(a)) consists in executing the instruction mov $0x1,

%eax. We execute concurrently this test-case on CP and CE :
we set the state of the two environments to s and we exe-
cute in both the instruction pointed by the program counter.
We observe no difference in their final state. Therefore, we
conclude that δCE (s) = δCP (s) and that, for the state s,
CP is faithfully emulated by CE . The second test-case s
(Figure 1(b)) consists in executing the instruction push %fs,
that saves the segment register fs on the stack. Although
the register is 16 bits wide, the IA-32 specification dictates
that, when operating in 32-bit mode, the CPU has to reserve
32 bits of the stack for the store. In the example we observe
that CP leaves the upper 16 bits of the stack untouched,
while CE overwrites them with zero (the different bytes are
highlighted in the figure). The final state of the two envi-
ronments differs because the content of their memory differs.
Consequently, we have that, for s, δCP (s) 6= δCE (s). That
proves that CE does not faithfully emulate CP . It is worth
noting that this example reflects a real defect we have found
in QEMU using our testing methodology.

3. EMUFUZZER
The development of the fuzzing-based approach just de-

scribed requires two major efforts. First, as the number of
states in which the environment has to be tested is pro-
hibitively large, we have to focus our efforts on a small sub-
set of states. Consequently, we have to carefully craft those
states to avoid redundancy and to maximise the complete-
ness of the testing. Second, the detection of deviations in

CPU state (R)

eax 0x00000000
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CE

CPU state (R)

eax 0x00000000
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CP

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s′

CE

δCE
(s)

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s′

CP

δCP
(s)

(a)

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CE

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e4
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...
0xbfe7d4e0 aa bb cc dd

Exception state (E)
⊥

s

CP

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e0
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...

0xbfe7d4e0 7b 00 00 00

Exception state (E)
⊥

s′

CE

δCE
(s)

CPU state (R)

eax 0x00000001
esp 0xbfe7d4e0
fs 0x007b

Memory state (M)

0x08090000 mov $0x1, %eax
0x08090005 push %fs
0x08090006 xor %eax, %eax
... ...

0xbfe7d4e0 7b 00 cc dd

Exception state (E)
⊥

s′

CP

δCP
(s)

(b)

Figure 1: An example of our testing methodology with two different test-cases (s and s): (a) no deviation in
the behaviour is observed, (b) the words at the top of the stack differ (highlighted in gray).

the behaviours of the two environments requires to setup the
two and to inspect their state at the end of the execution
of each test-case. Thus, we need to develop a mechanism to
efficiently initialise and compare the state of the two envi-
ronments. This section describes the details of our testing
methodology.

Although the methodology we are proposing is architec-
ture independent, our implementation, codenamed EmuFuzzer,
is currently specific for IA-32. This choice is solely motivated
by our limited hardware availability. Nevertheless, minor
changes to the implementation would be sufficient to port it
to different architectures. To ease the development, the cur-
rent version of the prototype runs entirely in user-space and
thus can only verify the correctness of the emulation of un-
privileged instructions and whether privileged instructions
are correctly prohibited. EmuFuzzer deals with two different
types of emulators: process emulators that emulate a sin-
gle process at a time (e.g., Valgrind, PIN, and QEMU), and
whole-system emulators that emulate an entire system (e.g.,
BOCHS, Simics, and QEMU2).

3.1 Test-case Generation
In our testing methodology, the test-cases are merely the

states of the environment under testing. For simplicity we
consider a test-case as composed by data and code. If s =
(pc,R,M,⊥) is the test case, the code consists in the bytes

2QEMU supports both whole-system and process emulation.

loaded in memory, representing the instruction (or the se-
quence of instructions) pointed by pc and that will be ex-
ecuted by the CPU. The data of the test-case are R and
the remaining bytes of memory. To generate test-cases we
adopt two strategies: (i) random test-case generation, where
both data and code are random, and (ii) CPU-assisted test-
case generation, where data are random, while code is gen-
erated algorithmically, with the support of the physical and
of the emulated CPUs. The advantage of using two different
strategies is a better coverage of the test-case space.

Practically speaking, a test-case consists in a small as-
sembly program, generated with one of the aforementioned
techniques. Figure 2 shows a sample test-case (written in
C for clarity). This program initialises the state of the en-
vironment, by loading the data of the test-case in memory
(lines 5–9) and in the CPU (lines 11–13), and subsequently
triggers the execution of the code of the test-case (lines 15–
16). The program is compiled with special compiler flags to
generate a tiny self-contained executable (i.e., that does not
use any shared library).

3.1.1 Random Test-case Generation
In random test-case generation, both data and code of the

test-case are generated randomly. The memory is initialised
by mapping a file filled with random data. For simplicity,
the same file is mapped multiple times at consecutive ad-
dresses until the entire user-portion of the address space is

65 66

05

00

00 ff

............ ff

00 ff

67

00

00 . 02 . . . fd . ff

a
d
d

$
0
x
0
0
,
%
a
x

a
d
d

$
0
x
0
2
,
%
a
x

a
d
d

$
0
x
f
d
,
%
a
x

a
d
d

$
0
x
f
f
,

%
a
x

(a)

65 66

05

00

00 ff

............ ff

00 ff

67

00

00 . 02 . . a0 . . ff

a
d
d

$
0
x
0
0
,
%
a
x

a
d
d

$
0
x
0
2
,
%
a
x

a
d
d

$
0
x
a
0
,
%
a
x

a
d
d

$
0
x
f
f
,

%
a
x

o
p
co

d
e

o
p
e
ra

n
d

(b)

Figure 3: Example of CPU-assisted test-case generation for the opcode 66 05 (mov imm16,%ax): (a) näıve and
(b) optimised generation (paths in gray are not explored).

1 void main() {
2 void *p;
3 char code[] = "code of the test-case ";
4

5 // Initialise the memory with random data
6 for (p = 0x0; p < FILE_SIZE; p += FILE_SIZE) {
7 f = open(FILE_WITH_RANDOM_DATA, O_RDWR);
8 mmap(p, PAGE_SIZE, ..., MAP_FIXED, f, 0);
9 }

10

11 // Initialise the registers with random data
12 asm("mov RANDOM, %eax");
13 ...
14

15 // Execute the code of the test-case (pc = code)
16 ((void(*)()) code)();
17 }

Figure 2: Sample test-case (in C for clarity).

allocated. To avoid a useless waste of memory, the file is
lazily mapped in memory, such that physical memory pages
are allocated only if they are accessed. The CPU registers
are also initialised with random values. As we work in user-
space, we cannot allocate the entire address space because
a part of it is reserved to the kernel. Therefore, to minimise
page faults when registers are used to dereference memory
locations, we make sure the value of general purpose regis-
ters fall around the middle of the allocated address space.
Obviously, code generated with this approach might contain
more than one instruction.

3.1.2 CPU-assisted Test-case Generation
A thorough testing of an emulator requires to verify that

each possible instruction is emulated faithfully. Unfortu-
nately, the pure random test-case generation approach pre-
sented earlier is very unlikely to cover the entire instruction
set of the architecture (the majority of CPU instructions
require operands encoded using specific encoding and oth-
ers have opcodes of multiple bytes). Ideally, we would have
to enumerate and test all possible instances of instructions
(i.e., combinations of opcodes and operands). Clearly this
is not feasible. To narrow the problem space, we identify
all supported instructions and then we test the emulator us-

ing only few peculiar instances of each instruction. That is,
for each opcode we generate test-cases by combining the op-
codes with some predefined operand values. As in random-
test case generation, the data of the test-case are random.

Näıve Exploration of the Instruction Set. Our algorithm for
generating the code of a test-case leverages both the physical
and the emulated CPUs, in order to identify byte sequences
representing valid instructions. We call our algorithm CPU-
assisted test-case generation. The algorithm enumerates the
sequences of bytes and discards all the sequences that do not
represent valid code. The CPU is the oracle that tells us if
a sequence of bytes encodes a valid instruction or not: se-
quences that raise illegal instruction exceptions do not rep-
resent valid code. We run our algorithm on the physical
and on the emulated CPUs and then we take the union of
the two sets of valid instructions found. The sequences of
bytes that cannot be executed on any of the CPUs are dis-
carded because they do not represent interesting test-cases:
we know in advance that the CPUs will behave equivalently
(i.e., E′ = illegal instruction). On the other hand, a se-
quence of bytes that can be executed on at least one of the
two CPUs is considered interesting because it can lead to
one of the following situations: (i) it represents a valid in-
struction for one CPU and an invalid instruction for the
other; (ii) it encodes a valid instruction for both CPUs but,
once executed, causes the CPUs to transition to two different
states.

There are other possible approaches to generate the code
of test-cases. For example, one can generate assembly in-
structions and then compile them with an assembler or use
a disassembler to detect which sequences of bytes encode
a legal instruction. However, limitations of the assembler
or of the disassembler negatively impact on the complete-
ness of the generated test-cases. Besides our approach, none
of the ones just mentioned can guarantee no false-negative
(i.e., that a sequence of bytes encoding a valid instruction is
considered invalid).

Optimised Exploration of the Instruction Set. We can imag-
ine to represent all valid CPU instructions as a tree, where
the root is the empty sequence of bytes and the nodes on
the path from the root to the leaves represent the various
bytes that compose the instruction. Figure 3(a) shows an

example of such a tree. Our algorithm exploits a particular
property of this tree in order to optimise the traversal and
to avoid the generation of redundant test-cases. The ma-
jority of instructions have one or more operands and thus
multiple sequences of bytes encode the same instruction, but
with different operands. All such sequences share the same
prefix.

As an example, let us consider the 216 sequences of bytes
from 66 05 00 00 to 66 05 FF FF that represent the same in-
struction, add imm16,%ax, with just different values of the
16-bit immediate operand. Figure 3(a) shows the tree rep-
resentation of the bytes that encode this instruction. The
sub-tree rooted at node 05 encodes all the valid operands of
the instruction. Without any insight on the format of the
instruction, one has to traverse in depth-first ordering the
entire sub-tree and to assume that each path represents a
different instruction. Then, for each traversed path, a test-
case must be generated. Our algorithm, by traversing only
few paths of the sub-tree rooted at node 05, is able to in-
fer the format of the instruction: (i) the existence of the
operand, (ii) which bytes of the instruction encode the op-
code and which ones encode the operand, and (iii) the type
of the operand. Once the instruction has been decoded (in
the case of the example the opcode is 66 05 and it is fol-
lowed by a 16-bit immediate), without having to traverse
the remaining paths, our algorithm generates a minimal set
of test-cases with a very high coverage of all the possible
behaviours of the instruction. These test-cases are gener-
ated by fixing the bytes of the opcode and varying the bytes
of the operand. The intent is to select operand values that
more likely generate the larger class of behaviours (e.g., to
cause an overflow or to cause an operation with carry). For
example, for the opcode 66 05, our algorithm decodes the
instruction by exploring only 0.5% of the total number of
paths and generates only 56 test-cases. The optimised tree
traversal is shown in Figure 3(b), where paths in gray are
those that do not need to be explored. The heuristics on
which our rudimentary, but faithful, instructions decoder is
built on is briefly described later in the next paragraph. It
is worth noting that, unlike traditional disassemblers, we
decode instructions without any prior knowledge of their
format. Thus, we can infer which bytes of an instruction
represent the opcode, but we do not know which high-level
instruction (e.g., add) is associated with the opcode.

CPU-assisted Instruction Decoding. The optimised traver-
sal algorithm just described requires the ability to decode an
instruction, and to identify its opcode and operands. Again,
for maximum precision, we use the CPU like an oracle: given
a sequence of bytes, the CPU tells us if that sequence en-
codes a valid instruction or not. The decoding is trial-based:
we mutate an executable sequence of bytes, we query the
oracle to see which mutations are valid and which are not,
and from the result of the queries we infer the format of
the instruction. Mutations are generated following specific
schemes that reflect the ones used by the CPU to encode
operands [11]. The idea is that, if a sequence of bytes con-
tains an operand, we expect all the mutations applied to
the bytes of the operand and conforming with its encoding
scheme to be valid (i.e., the CPU executes only valid mu-
tations). If all the mutations conforming with a particular
encoding scheme lead to valid instructions and some muta-
tions generated with the other schemes do not, we conclude
that the mutated bytes of the instruction encode the operand

Emulated CPU
(CE)

Physical CPU
(CP)

LE1: create t.c. process

LE2: execute t.c. init code (stop at pcE)
LE3: copy initial state sE

LP1: fetch page p1 (p1 = pcE & ∼ 0xFFF)

LE4: page p1

LP2: initialisation (sP = sE)

LP3: execute t.c. code

LP4: fetch missing page p2

LE5: page p2

LP5: execute t.c. code

LP6: allow writes to page p2

LP7: execute t.c. code

LP8: finalisation (save s′P)

LP9: execution completed

LE6: execute t.c. code

LE7: copy final state s′E

LP10: fetch modified page p2

LE8: page p2

LP11: compare s′P with s′E

Figure 4: Logic of the execution of a test-case (t.c.,
for short). denotes the execution of the test-case
and denotes the execution of the code of the logic.

and the mutation scheme successfully applied represents the
type of the operand. Moreover, the bytes that precede the
operand constitute the opcode of the instruction.

3.2 Test-case Execution
Given a test-case, we have to execute it on both the phys-

ical and the emulated CPUs and then compare their state at
the end of the execution. Our test-cases are small programs
that initialise the state of the environment, and transfer the
control to the selected sequence of instructions. For this rea-
son, we start by executing the test-case program only in one
environment and, as soon as the initialisation of the state
is completed, we replicate the status of the registers and
the content of the memory pages to the other environment.
Then, we execute the code of the test-case in the two envi-
ronments and, at the end of the execution, we compare the
final state. In the current implementation we initially ex-
ecute the program in the CPU emulator and subsequently
replicate the state to the physical CPU. Nevertheless, the
core of analysis is performed by the component running in
the physical environment. In the remaining of this section
we describe the logic of the execution of a test-case and we
give details about how we have extended the tested emula-
tors to embed such logic, and how we have developed the
module to run a test-case on the physical CPU. For sim-

plicity, the details that follow are specific for the testing
of process emulators. Nonetheless, the implementation for
testing whole-system emulators only requires the addition
of introspection capabilities to isolate the execution of the
test-case program [8].

3.2.1 Logic of the Execution of a Test-case
The logic of the execution of a test-case is summarised

in Figure 4 and described in detail in the following para-
graphs. To facilitate the presentation, we refer to the state
of CE prior and posterior to the execution of a test-case re-
spectively as sE = (pcE , RE , ME , EE) and s′E = (pc′E , R

′
E ,

M ′
E , E

′
E). Similarly, for CP , we use respectively sP = (pcP ,

RP , MP , EP) and s′P = (pc′P , R
′
P , M

′
P , E

′
P).

Setup of the Emulated Execution Environment. The CPU
emulator is started and it begins to execute the test-case
program (LE1). We let the emulator execute the test-case
program until the state of the environment is completely
initialised (LE2). In other words, the program is executed
without interference until the execution reaches pcE (i.e.,
the address of the code of the test case).

Setup of the Physical Execution Environment. When the
state of the emulated environment has been setup (i.e., when
the execution has reached pcE), the initial state, sE = (pcE ,
RE , ME , EE), can be replicated into the physical environ-
ment. The emulator notifies the module running on the
physical CPU and transfers the state of the CPU registers
to the latter (LE3). Initially, the exception state EE is al-
ways assumed to be ⊥. Note that the memory state of the
physical CPU MP is not synchronised with the emulated
CPU. At the beginning, only the memory page containing
the code of the test-case is copied into the physical envi-
ronment (LP1 and LE4). The remaining memory pages are
instead synchronised on-demand the first time they are ac-
cessed, as it will be explained in detail in the next paragraph.
At this point we have that RE = RP , EE = EP =⊥, but
ME 6= MP (the only page that is synchronised is the one
with the code).

Test-case Execution on the Physical CPU. The execution of
the code of the test-case on the physical CPU starts, begin-
ning from program address pcP = pcE (LP3). The execution
of the code continues until one of the following situations
occurs: (i) the execution reaches the last instruction of the
test-case; (ii) a page-fault exception caused by an access to a
missing page occurs; (iii) a page-fault exception caused by a
write access to a non-writable page occurs; (iv) any other ex-
ception occurs. Situation (i) indicates that the entire code of
the test-case is executed successfully. That means that all of
the instructions of the test-case were valid and did not gen-
erate any fatal CPU exception. The first type of page-fault
exceptions (ii) allows us to synchronise lazily the memory
containing the data of the test-case at the first access. Dur-
ing the initialisation phase (LP2) all the memory pages of the
physical environment, but that containing the code (and few
others containing the code to run the logic), are protected
to prevent any access. Consequently, if an instruction of the
test-case tries to access the memory, we intercept the access
through the page fault exception and we retrieve the en-
tire memory page from the emulated environment (LP4 and
LE5). All data pages retrieved are initially marked as read-
only to catch future write accesses. After that, the execution
of the code of the test-case on the physical CPU is resumed

(LP5). The second type of page-fault exceptions (iii) allows
us to intercept write accesses to the memory. Written pages
are the only pages that can differ from an environment to
the other. Therefore, after a faulty write operation we flag
the memory page as written. Then, the page is marked as
writable and the execution is resumed (LP6 and LP7). Ob-
viously, depending on the code of the test-case, situations
(ii) and (iii) may occur repeatedly or may not occur at all
during the analysis. Finally, the occurrence of any other
exception (iv) indicates that the execution of the test-case
cannot be completed because the CPU is unable to execute
an instruction. When the execution of the code of the test-
case on the physical CPU terminates, because of (i) or (iv),
we regain the control of the execution, we immediately save
the state of the environment for future comparisons (LP8),
and we restore the state of the CPU prior to the execution
of the test-case.

Test-case Execution on the Emulated CPU. The execution of
the code of the test-case in the emulated environment, previ-
ously stopped at pcE (LE2), can now be safely resumed. The
execution of the code in the emulated environment must fol-
low the execution in the physical environment. In the physi-
cal environment the state of the memory is synchronised on-
demand and thus the initial state of the memory ME must
remain untouched until the physical CPU completes the ex-
ecution of the test-case. The execution is resumed and it
terminates when all the code of the test-case is executed or
an exception occurs (LE6).

Comparison of the Final State. Both the emulator and the
physical environments have completed the execution of the
test-case and thus we can compare their state (s′E = (pc′E ,
R′E , M

′
E , E

′
E) and s′P = (pc′P , R

′
P , M

′
P , E

′
P)). The com-

parison is performed by the module running in the physical
environment. The emulator notifies the other party and then
transfers the program counter pc′E , the current state of the
CPU registers R′E , and the exception state E′P (LE7). To
compare s′E and s′P it is not necessary to compare the entire
address space: the module running in the physical environ-
ment fetches only the content of the pages that have been
marked as written (LP10 and LE8). At this point s′E is com-
pared with s′P (LP11). If s′E differs from s′P , we record the
test-case and the difference(s) produced.

3.2.2 Embedding the Logic in the CPU Emulator
The test-case program is run directly in the emulator

under analysis. The emulator is extended to include the
code that implements the logic of the analysis previously
described. We embed the code leveraging the instrumenta-
tion API provided by the majority of the emulators. The
embedded code serves the following three purposes. First,
it allows to intercept the beginning and the end of the ex-
ecution of each basic block (or instruction, depending on
the emulator) of the emulated program. If the code of the
test-case contains multiple instructions, all basic blocks (or
instructions) are intercepted and contribute to the testing.
We assume the code used to initialise the environment is
always correctly emulated and thus we do not test it nor
we intercept its execution. Second, the embedded code al-
lows to intercept the exceptions that may occur during the
execution of the test-case program. Third, it provides an in-
terface to access the values of the registers of the CPU and
the content of the memory of the emulator.

3.2.3 Running the Logic on the Physical CPU
On the physical CPU, we do not run directly the test-case

program, but we run it through a small user-space program
that implements the various steps of the analysis described
in 3.2.1. An initialisation routine (LP2 in Figure 4), is used
to setup the registers of the CPU, to register signal handlers
to catch page faults and the other run-time exceptions that
can arise during the execution of the test-case, and to trans-
fer the control to the code of the test-case. The code of the
test-case is executed as a shellcode [13] and consequently
we must be sure it does not contain any dangerous con-
trol transfer instruction that would prevent us to regain the
control of the execution (e.g., jumps, function calls, system
calls). Given the approaches we use to generate the code
of the test-cases, we cannot prevent the generation of such
dangerous test-cases. Therefore, we rely on a traditional
disassembler to analyse the code of the test-case, identify
dangerous control transfer instructions, and patch the code
to prevent them. At the end of the code of the test-case we
append a finalisation routine (LP8 in Figure 4), that is used
to save the content of the registers for future comparison,
to restore their original content, and to resume the normal
execution of the remaining steps of the logic. Exceptions
other than page-faults interrupt the execution of the test-
case. The handlers of these exceptions record the exception
occurred and overwrite the faulty instruction and the fol-
lowing ones with nops, to allow the execution to reach the
finalisation routine to save the final state of the environment.

In the approach just described the program implementing
the logic and the test-case share the same address space.
Therefore, the state of the memory in the physical envi-
ronment differs slightly from the state of the memory in
the emulated environment: some memory pages are used
to store the code and the data of the user-space program,
through which we run the test-case. If the code of the test-
case accesses any of these pages, we would notice a spurious
difference in the state of the two environments. Considering
that the occurrence of such event is highly improbable, we
decided to neglect this problem, to avoid complicating the
implementation. To guarantee that at the end of the code
of the test-case we are able to regain the control of the exe-
cution, we rely on a traditional disassembler to analyse and
patch the code of the test-case. If the disassembler failed
to detect dangerous control transfer instructions, we could
not be able to regain the control of the execution properly.
To prevent endless loops caused by failures of this analysis,
we put a limit on the maximum CPU time available for the
execution of a test-case and we interrupt the execution if the
limit is exceeded.

4. EVALUATION
This section presents the results of the testing of four

IA-32 emulators with EmuFuzzer: three process emulators
(QEMU, Valgrind, and Pin) and a system emulator (BOCHS).
We generated a large number of test-cases, evaluated their
quality, and fed them to the four emulators. None of the
emulators tested turned out to be faithful. In each of them
we found different classes of defects: small deviations in the
content of the status register after arithmetical and logical
operations, improper exception raising, incorrect decoding
of instructions, and even crash of the emulator. Our ex-
perimental results lead to the following conclusions: (i) de-

veloping a CPU emulator is actually very challenging, (ii)
developers of these software would highly benefit from spe-
cialised testing methodology, and (iii) EmuFuzzer proved to
be a very effective tool for testing CPU emulators.

4.1 Experimental Setup
We performed the evaluation of our testing methodol-

ogy using an Intel Pentium 4 (3.0 GHz), running Debian
GNU/Linux with kernel 2.6.26, as baseline physical CPU.
The physical CPU supported the following features: MMX,
SSE, SSE2, and SSE3. We tested the latest stable release
of each emulator, namely: QEMU 0.9.1, Valgrind 3.3.1, Pin
2.5-23100, and BOCHS 2.3.7. The features of the physical
machine were compatible with the features of the tested em-
ulators with few exceptions, which we identified at the end
of the testing, using a traditional disassembler, and ignored
(for example, BOCHS also supports SSE4).

4.2 Evaluation of Test-case Generation
We generated about 3 million test-cases, 70% of which us-

ing our CPU-assisted algorithm and the remaining 30% ran-
domly. We empirically estimated the completeness of the set
of instructions covered by the generated test-cases by disas-
sembling the code of the test-cases, by counting the num-
ber of different instructions found (operands were ignored),
and by comparing this number with the total number of
mnemonic instructions recognised by the disassembler. The
randomly generated test-cases covered about 75% of the to-
tal number of instructions, while the test-cases generated us-
ing our CPU-assisted algorithm covered about 62%. Overall,
about 81% of the instructions supported by the disassembler
were included in the test-cases used for the evaluation. It is
worth noting that in several cases our test-cases contained
valid instructions not recognised by the disassembler.

The implementation of our CPU-assisted algorithm is not
complete and lacks support for all instructions with pre-
fixes. For example, currently our algorithm does not gen-
erate test-cases involving instructions operating on 16-bits
operands. We have empirically estimated that instructions
with prefixes represent more than 25% of the instructions
space. Therefore, a complete implementation of the algo-
rithm would allow to achieve a nearly total coverage. We
speculate that the high coverage of randomly generated test-
cases is due to the fact that the IA-32 instruction set is very
dense and consequently a random bytes stream can be in-
terpreted as a series of valid instructions with high prob-
ability. Nevertheless, during our empirical evaluation we
reached a local optimum from which it was impossible to
move away, even after having generated hundreds of thou-
sands of new test-cases. The CPU-assisted algorithm instead
does not suffer this kind of problem: a complete implemen-
tation would allow to generate a finite number of test-cases
exercising all instructions in multiple corner cases.

4.3 Testing of IA-32 Emulators
The four CPU emulators were tested using a small subset

(∼10%) of the generated test-cases, selected randomly. The
whole testing took about a day, at the speed of around 15
test-cases per second. Table 2 reports the results of our ex-
periments. Behavioural differences found are grouped into
three categories: CPU registers state (R), memory state
(M), and exception state (E). Differences in the state of the
registers are further separated according to the type of the

Deviation type
QEMU Valgrind Pin BOCHS

opcodes test-cases opcodes test-cases opcodes test-cases opcodes test-cases

R

CPU flags 39 1362 13 684 22 2180 2 2686

CPU general 3 142 8 141 3 18 8 8

FPU 179 41738 157 39473 0 0 71 1631

M memory state 34 1586 10 420 0 0 1 2

E

not supported 2 1120 334 11513 2 12 0 0

over supported 97 1859 10 716 0 0 5 8

other 126 6069 41 6184 20 34 45 113

Total 405 53926 529 59135 43 2245 130 4469

Table 2: Results of the evaluation: number of distinct mnemonic opcodes and number of test-cases that
triggered deviations in the behaviour between the tested emulators and the baseline physical CPU.

registers: status (CPU flags), general purpose and segment
(CPU general), and floating-point (FPU). Differences in the
exception state are separated in: legal instructions not sup-
ported by the emulator (not supported), illegal instructions
valid for the emulator (over supported), and other devia-
tions in the exception state (other). As an example, the last
class includes instructions that expect aligned operands but
execute without any exception even if the constraint is not
satisfied. For each emulator and type of deviation, the table
reports the number of distinct mnemonic opcodes leading
to the identification of that particular type of deviation (op-
codes) and the number of test-cases proving the deviation
(test-cases). It is worth pointing out that different combi-
nations of prefixes and opcodes are considered as different
mnemonic opcodes. For each distinct opcode that produced
a particular type of deviation, we verified and confirmed
manually the correctness of at least one of the results found.

The results demonstrate the effectiveness of the proposed
testing methodology. For each emulator we found several
mnemonic opcodes not faithfully emulated: 405 in QEMU,
529 in Valgrind, 43 in Pin, and 130 in BOCHS. It is worth
noting that some of the deviations found might be caused
by too lax specifications of the physical CPU. For exam-
ple, the manufacturer documentation of the add instruction
precisely states the effect of the instruction on the status
register, while the documentation of and states the effect
of the instructions only on some bits of the status register,
while leaving undefined the value the remaining bits [11].
Our reference of the specification is the CPU itself and con-
sequently, with respect to our definition of faithful emu-
lation, any deviation has to be considered a tangible de-
fect. Indeed, for each deviation discovered by EmuFuzzer
it is possible to write a program that executes correctly in
the physical CPU, but crashes in the emulated CPU (or vice
versa). We manually transformed some of the problematic
test-cases into such kind of programs and verified the cor-
rectness of our claim. The remarkable number of defects
found also witnesses the difficulty of developing a fully fea-
tured and specification-compliant CPU emulator and mo-
tivates our conviction about the need of a proper testing
methodology.

The following paragraphs summarise the defects we found
in each emulator. The description is very brief because the
intent is not criticise the implementation of the tested emula-
tors, but just to show the strength of EmuFuzzer at detecting
various classes of defects.

QEMU. A number of arithmetical and logical instructions
are not properly executed by the emulator because of an er-
ror in the routine responsible for decoding certain encoding
of memory operands (e.g., or %edi, 0x67(%ebx) encoded
as 08 7c e3 67); the instructions reference the wrong memory
locations and thus compute the wrong results. The emula-
tor accepts several illegal combinations of prefixes and op-
codes and executes the instruction ignoring the prefixes (e.g.,
lock fcos). Floating-point instructions that require prop-
erly aligned memory operands are executed without rais-
ing any exception even when the operands are not aligned,
because the decoding routine does not perform alignment
checking (e.g., fxsave 0x00012345). Segments registers, which
are 16 bits wide, are emulated as 32-bit registers (the unused
bits are set to zero), thus producing deviations when they are
stored in other 32-bits registers and in memory (e.g., push
%fs). Some arithmetic and logical instructions do not faith-
fully update the status register. Finally, we found sequences
of bytes that freeze and others that crash the emulator (e.g.,
xgetbv).

Valgrind. Some instructions have multiple equivalent en-
codings (i.e., two different opcodes encode the same instruc-
tion) but the emulator does not recognise all the encodings
and thus the instructions are considered illegal (e.g., addb

$0x47, %ah with opcode 82). Several legal privileged in-
structions, when invoked with insufficient privileges, do not
raise the appropriate exceptions (e.g., mov (%ecx), %cr3

raises an illegal operation exception instead of a general pro-
tection fault). On the physical CPU, each instruction is
executed atomically and, consequently, when an exception
occurs the state of the memory and of the registers corre-
spond to the state preceding the execution of the instruc-
tion. On Valgrind instead, instructions are not executed
atomically because they are translated into several interme-
diate instructions. Consequently, if an exception occurs in
the middle of the execution of an instruction, the state of the
memory and of the registers might differ from the state prior
to the execution of the instruction (e.g., idiv (%ecx) when
the divisor is zero). As in QEMU, some logical instructions
do not faithfully update the status register.

Pin. Not all exceptions are properly handled (i.e., trap and
illegal instruction exceptions); Pin does not notify the em-
ulated program about these exceptions. Several legal in-
structions that raise a general protection fault on the phys-
ical CPU are executed without generating any exception on

Pin (e.g., add %ah, %fs:(%ebx)). When segment registers
are stored (and removed) in the stack, the stack pointer is
not updated properly: a double-word should be reserved on
the stack for these registers, but Pin reserves a single word
(e.g., push %fs). The FPU appears to be virtualised (i.e.,
the floating-point code is executed directly on the physical
FPU) and, as expected, no deviation is detected in the ex-
ecution of FPU instructions. As in Valgrind and QEMU,
some logical instructions do not faithfully update the status
register.

BOCHS. Certain floating-point instructions alter the state
of some registers of the FPU and other instructions com-
pute results that differ from those computed by the FPU of
the physical CPU (e.g., fadd %st0, %st7). If an exception
occurs in the middle of the execution of an instruction ma-
nipulating the stack, the initial content of the stack pointer
corresponds to that we would have if the instruction were
successfully executed (e.g., pop 0xffffffff). Some instruc-
tions do not raise the proper exception (e.g., int1 raises a
general protection fault instead of a trap exception). As in
Valgrind, QEMU, and Pin, some logical instruction do not
faithfully update the status register, although the number of
such instruction is smaller than the number of instructions
affected by this problem in the other emulators.

5. DISCUSSION
EmuFuzzer currently works in user-space and thus it can

only verify whether unprivileged code is not emulated faith-
fully, with few exceptions. For example, some unprivileged
instructions that access segment registers might not be tested
because it is not possible to manipulate properly the value of
these registers from user-space. Fortunately, in many cases
the values of the segment registers in the emulated and in
the physical environments do not need to be manipulated
as they already match. Another limitation is that, from
user-space, we cannot manipulate control registers and thus
we cannot enable supplementary CPU-enforced alignment
checking and the other enforcements it offers, which are dis-
abled by default. In the future we plan to port the compo-
nent running in the physical environment of EmuFuzzer in
kernel-space, to be able to perform a more thorough testing.
Furthermore, we plan to test new CPU emulators and also to
use EmuFuzzer to test the emulation routines adopted by vir-
tual machines to emulate non-virtualisable instructions (i.e.,
privileged instructions that do not cause a trap if executed
with insufficient privileges [28]). As an example, Virtual-
Box [31] leverages QEMU code for that purpose.

6. RELATED WORK

6.1 Software Testing
Fuzz-testing has been introduced by Miller et al. [21], and

it is still widely used today for testing different types of ap-
plications. Originally, fuzz-testing consisted in feeding ap-
plications purely random input data and detecting which
inputs were able to crash an application, or to cause un-
expected behaviours. Today, this testing methodology is
used to test many different types of applications; for exam-
ple, GUI applications, web applications, scripts, and kernel
drivers [5].

As certain applications require inputs with particular for-
mat (e.g., a XML document or a well formed Java program),

pure randomly generated inputs cannot guarantee a reason-
able coverage of the code of the application under analysis.
Recently developed testing techniques typically leverage do-
main specific knowledge and use this knowledge, optionally
in tandem with a random component, to drive inputs gen-
eration [4, 12, 32]. An alternative approach to improve the
completeness of the testing consists in building constraints
that describe what properties are required for the input to
trigger the execution of particular program paths, and in us-
ing a constraint solver to find inputs with these properties [3,
9, 30, 18]. This paper presents a fuzz-testing methodology
specific for CPU emulators that leverages both pure ran-
dom inputs generation and domain knowledge to improve
the completeness of the analysis.

The idea of using mechanically generated tests and to
compare the behaviour of two components to detect devi-
ations imputable to bugs is known in literature as differ-
ential testing [20]. EmuFuzzer adopts differential testing to
detect if the tested CPU emulator behaves unfaithfully with
respect to the physical CPU emulated.

6.2 Computer Security
CPU emulators are widely used in computer security for

various purposes. One of the most common applications
is malware analysis [1, 19]. Emulators allow fine-grained
monitoring of the execution of a suspicious programs and
to infer high-level behaviours. Furthermore they allow to
isolate the execution and to easily checkpoint and restore
the state of the environment. Malware authors, aware of
the techniques used to analyse malware, aim at defeating
those techniques such that their software can survive longer.
To defeat dynamic behavioural analysis based on emulators,
they typically introduce in malware routines able to detect
if a program is run in an emulated or in a physical environ-
ment. As the average user targeted by the malware does
not use emulators, the presence of an emulated environment
likely indicates that the program is being analysed. Thus,
if the malicious program detects the presence of an emula-
tor, it starts to behave innocuously such that the analysis
does not detect any malicious behaviour. Several researchers
have analysed state-of-the-art emulators to find unfaithful
behaviours that could be used to write specific detection
routines [25, 27, 29]. Unfortunately for them, their results
were obtained through a manual scrutiny of the source code
or rudimentary fuzzers, and thus the results are largely in-
complete. The testing technique presented in this paper can
be used to find automatically a large class of the unfaithful
behaviours that a miscreant could use to detect the pres-
ence of an emulated CPU. These information could then be
used to harden an emulator, to the point that it satisfies the
requirements for undetectability identified by Dinaburg et
al. [6].

7. CONCLUSIONS
CPU emulators are complex pieces of software. In this

paper, we presented a testing methodology for CPU emula-
tors, based on fuzzing. Emulators are tested by generating
test-case programs and by executing them on the emulated
and on the physical CPUs. As the physical CPU is assumed
to follow perfectly the specification, defects in the emulators
can be detected by comparing the state of the emulator with
that of the physical CPU, after the execution of the test-case
program. The proposed methodology has been implemented

in a prototype, codenamed EmuFuzzer, and it was used to
test four state-of-the-art IA-32 CPU emulators. EmuFuzzer
discovered minor and major defects in each of the tested em-
ulators, thus demonstrating the effectiveness of the proposed
approach.

8. REFERENCES
[1] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A

Tool for Analyzing Malware. In 15th European
Institute for Computer Antivirus Research Annual
Conference (EICAR 2006), 2006.

[2] F. Bellard. QEMU, a fast and portable dynamic
translator. In Proceedings of the annual conference on
USENIX Annual Technical Conference (ATEC),
Berkeley, CA, USA, 2005. USENIX Association.

[3] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. EXE: Automatically Generating Inputs
of Death. In Proceedings of the 13th ACM conference
on Computer and communications security, 2006.

[4] B. Daniel, D. Dig, K. Garcia, and D. Marinov.
Automated testing of refactoring engines. In
Proceedings of the 6th joint meeting of the European
Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, Sept. 2007.

[5] J. DeMott. The Evolving Art of Fuzzing.
http://www.vdalabs.com/tools/The_Evolving_Art_

of_Fuzzing.pdf.

[6] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
Malware Analysis via Hardware Virtualization
Extensions. In Proceedings of the 15th ACM conference
on Computer and communications security, 2008.

[7] P. Ferrie. Attacks on Virtual Machine Emulators.
Technical report, Symantec Advanced Threat
Research, 2006.

[8] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion
Detection. In Proceedings of Network and Distributed
Systems Security Symposium, NDSS, San Diego,
California, USA. The Internet Society, Feb. 2003.

[9] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
Whitebox Fuzz Testing. In Proceedings of the Network
and Distributed System Security Symposium, 2008.

[10] Google Inc. Android emulator. http://code.google.
com/android/reference/emulator.html.

[11] Intel. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Nov. 2008. Instruction Set
Reference.

[12] R. Kaksonen. A Functional Method for Assessing
Protocol Implementation Security. Technical report,
VTT Electronics, 2001.

[13] J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren,
N. Mehta, and R. Hassell. The Shellcoder’s Handbook:
Discovering and Exploiting Security Holes. John Wiley
& Sons, 2004.

[14] K. P. Lawton. Bochs: A Portable PC Emulator for
Unix/X. Linux Journal, Sept. 1996.

[15] H. A. Lichstein. When Should You Emulate?
Datamation, 1969.

[16] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and

K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation
(PLDI), 2005.

[17] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Högberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A Full System
Simulation Platform. Computer, 35(2), 2002.

[18] R. Majumdar and K. Sen. Hybrid Concolic Testing. In
Proceedings of the 29th international conference on
Software Engineering (ICSE’07), 2007.

[19] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and
J. C. Mitchell. A Layered Architecture for Detecting
Malicious Behaviors. In Proceedings of the
International Symposium on Recent Advances in
Intrusion Detection (RAID), Lecture Notes in
Computer Science. Springer, Sept. 2008.

[20] W. M. McKeeman. Differential Testing for Software.
Digital Technical Journal, 10(1), 1998.

[21] B. P. Miller, L. Fredrikson, and B. So. An Empirical
Study of the Reliability of UNIX Utilities.
Communications of the ACM, 33(12), December 1990.

[22] G. J. Myers. The Art of Software Testing. John Wiley
& Sons, 1978.

[23] NetBSD/amd64.
http://www.netbsd.org/ports/amd64/.

[24] N. Nethercote. Dynamic Binary Analysis and
Instrumentation. PhD thesis, Computer Laboratory,
University of Cambridge, United Kingdom, Nov. 2004.

[25] T. Ormandy. An Empirical Study into the Security
Exposure to Host of Hostile Virtualized Environments.
In Proceedings of CanSecWest Applied Security
Conference, 2007.

[26] D. Quist and V. Smith. Detecting the Presence of
Virtual Machines Using the Local Data Table.
http://www.offensivecomputing.net/files/

active/0/vm.pdf.

[27] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting
System Emulators. In Proceedings of Information
Security Conference (ISC 2007). Springer-Verlag,
2007.

[28] J. S. Robin and C. E. Irvine. Analysis of the intel
pentium’s ability to support a secure virtual machine
monitor. In Proceedings of the 9th conference on
USENIX Security Symposium (SSYMM’00), Berkeley,
CA, USA, 2000. USENIX Association.

[29] J. Rutkowska. Red Pill. . . or how to detect VMM
using (almost) one CPU instruction.
http://invisiblethings.org/papers/redpill.html.

[30] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for c. In Proceedings of the 10th
European software engineering conference, 2005.

[31] Sun Microsystem. VirtualBox.
http://www.virtualbox.org.

[32] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute
Force Vulnerability Discovery. Addison-Wesley
Professional, 2007.

