
A framework for behavior-based malware
analysis in the cloud

Lorenzo Martignoni†, Roberto Paleari‡, and Danilo Bruschi‡

Dipartimento di Fisica† Dipartimento di Informatica e Comunicazione‡

Università degli Studi di Udine Università degli Studi di Milano
lorenzo.martignoni@uniud.it {roberto,bruschi}@security.dico.unimi.it

Abstract. To ease the analysis of potentially malicious programs, dy-
namic behavior-based techniques have been proposed in the literature.
Unfortunately, these techniques often give incomplete results because the
execution environments in which they are performed are synthetic and
do not faithfully resemble the environments of end-users, the intended
targets of the malicious activities. In this paper, we present a new frame-
work for improving behavior-based analysis of suspicious programs. Our
framework allows an end-user to delegate security labs, the cloud, the
execution and the analysis of a program and to force the program to
behave as if it were executed directly in the environment of the former.
The evaluation demonstrated that the proposed framework allows se-
curity labs to improve the completeness of the analysis, by analyzing a
piece of malware on behalf of multiple end-users simultaneously, while
performing a fine-grained analysis of the behavior of the program with
no computational cost for end-users.

1 Introduction

With the development of the underground economy, malicious programs are
becoming very profitable products; they are used to spam, to perpetrate web
frauds, to steal personal information, and for many other nefarious tasks. An
important consequence of this lucrative motivation behind malware development
is that these programs are becoming increasingly specialized and difficult to
analyze: more and more often they attack very specific classes of users and
systems and their code is continuosly updated to introduce additional features
and specific modifications to thwart the analysis and eventually evade detection.

To counteract these new threats and to overcome the limitations of tradi-
tional malware analysis and detection techniques, security vendors and the re-
search community are moving towards dynamic behavior-based solutions. This
approach is becoming the primary method for security labs to automatically
understand the behaviors that characterize each new piece of malware and to
develop the appropriate countermeasures [1–3]. This technology is also used on
end-users’ hosts, to monitor the execution of suspicious programs and try to
detect and block malicious behaviors in real-time [4–6].

Dynamic behavior-based analysis has two major disadvantages: incomplete-
ness and non-negligible run-time overhead. Security labs analyze new malicious

programs automatically in special environments (e.g., virtual machines) which
allow very fine grained monitoring of the behavior of the programs. The auto-
matic behavioral analysis of specialized malware becomes more and more diffi-
cult because the malicious behaviors manifest only in very specific circumstances.
If the behavioral analysis is performed in inappropriate environments, like the
synthetic ones used in security labs, the results are very likely to be incomplete.
On the other hand, if the malicious program were analyzed directly on an end-
user’s machine, which is the intended target of the attack, the malicious behavior
would have more chances to be triggered and it would be caught as it manifests.
Unfortunately, the strict lightweight constraint required for end-users’ systems
does not allow a fine grained analysis of the behaviors of the programs [2, 3].
Consequently, some malicious behaviors (e.g., the leakage of sensitive informa-
tion) cannot be detected on end-users’ machines. Current solutions address the
incompleteness of dynamic analysis by systematically exploring all environment-
dependent programs paths [7, 8].

In this paper we propose a new framework for supporting dynamic behavior-
based malware analysis, based on cloud computing, that blends together the
computational power available in security labs (the cloud) with the heterogeneity
of end-users’ environments. The rationale of the framework are the two following
assumptions. First, the security lab has no limit on the computational resources
available and can exploit hardware features, in combination with recent advances
in research, to further improve its computational capabilities [9–11]. Second,
end-users’ environments are more realistic and heterogeneous than the synthetic
environments typically available in security labs and consequently are better
suited for analyzing potentially malicious software. The proposed framework
allows an end-user to delegate a security lab the execution and the analysis
of a potentially malicious program and to force the program to behave as if
it were executed directly in the environment of the former. The advantage is
twofold. It allows the security lab to monitor the execution of a potentially
malicious program in a realistic end-user’s environment and it allows end-users
to raise their level of protection by leveraging the computational resources of the
security lab for fine-grained analysis that would not be feasible otherwise. Since
each end-user’s environment differs from the others and since the behavior of a
program largely depends on the execution environment, through our framework,
the security lab can improve the completeness of the analysis by observing how a
program behaves in multiple realistic end-users’ environments. Such in the cloud
execution is made possible by a mechanism we have developed for forwarding
and executing (a subset of) the system calls invoked by the analyzed program
to a remote end-user’s environment and for receiving back the result of the
computation. As the execution path of a program entirely depends on the output
of the invoked system calls, the analyzed program running in the security lab
behaves as if it were executed directly in the environment of the user.

To evaluate the proposed approach, we have implemented a prototype for Mi-
crosoft Windows XP. Our evaluation witnessed that the distributed execution
of programs is possible and the computational impact on end-users is negligi-
ble. With respect to the traditional analysis in the security lab, the analysis of

2

malicious programs in multiple execution environments resulted in a significant
relative improvement of the code coverage: with just four additional distinct
end-users’ environments we achieved an improvement of ∼15%.

To summarize, the paper makes the following contributions: (i) a new frame-
work for dynamic behavior-based malware analysis in the cloud; (ii) a working
prototype of the above mentioned framework, that has also been integrated into
an existing behavior-based malware detector; (iii) an evaluation of the proposed
framework, demonstrating the feasibility and the efficacy of our idea.

2 Overview

Imagine a malicious program, like the one shown in Fig. 1, that resembles the
behavior of the Bancos malware [12]. To ease the presentation we use high-
level APIs of Microsoft Windows; nevertheless our approach works directly with
the system calls invoked by these functions. The program polls the foreground
window to check whether the user is visiting the website of a Brazilian bank. The
existence of such a window is the trigger condition of the malicious behavior. If
the bank website is visited, the program displays a fake authentication form to
tempt the user to type his login and password. Finally, the program forwards
the stolen credentials to a remote site.

The automatic analysis of such a piece of malware in a synthetic execution
environment, like those available in a security lab, is very likely to give incom-
plete results. Such an environment is generated artificially and consequently it
cannot satisfy all the possible trigger conditions of malicious programs. Further-
more, some malicious programs expect inputs from the user and then behave
accordingly. As the analysis is performed automatically, user inputs are also ar-
tificial and that can prevent the triggering of certain behaviors. On the other
hand, we have realistic execution environments, the systems of the end-users,
which are more suited for analyzing a piece of malware like Bancos, as they
are the intended victims of the malicious activity. Indeed, in the system of a cer-
tain class of users, the users of Brazilian banks, our sample malicious program
would manifest all its behaviors. Unfortunately, although such systems are more
suited for the analysis, it is not reasonable to expect to use all their resources
for detecting and stopping potentially malicious programs (fine grained analysis
can introduce a slowdown by a factor of 20 [3, 13]). Consequently, host-based
detectors perform only very lightweight analysis and cannot detect certain mali-
cious behaviors (e.g., to detect that sensitive information are being leaked using
data-flow analysis).

2.1 Delegating the analysis to the cloud

In our framework the behavior-based analysis of a new suspicious program is
performed in the cloud: the user U does not run directly on his system the sus-
picious program, nor the malware detector, but he requests the security lab L
to analyze the program on his behalf; in turn the latter requests the help of the
former to mitigate the fact that its execution environment is synthetic. Our ap-
proach to overcome the limitations of the execution environment of L is based on

3

VirtualAlloc();
...
VirtualFree();
while (true) {

hwnd1 = GetForegroundWindow();
title = GetWindowText(hwnd1);

if (title == "Banco do Brasil" ||
title == "Banco Itau" || ...) {

// Display a fake login screen for
// the site
hwnd2 = CreateWindow(...);
...
// Send credentials to a remote site
socket = WSAConnect();
WSASend(socket, ...);
...
break;

}

Sleep(500);
}

Fig. 1. Pseudo-code of a sample ma-
licious program that resembles the
Bancos trojan.

Lab (L) User (U)

VirtualAlloc()

. . .

VirtualFree()

GetForegroundWindow()

hwnd

GetWindowText(hwnd1)

"Baco du Brazil"

CreateWindow(...)

hwnd2

socket(...)

s1

s3

s4

s5

s6

Fig. 2. Diagram of the execution of the sample
malicious program in the security lab (L), by
forcing the program to behave as in the envi-
ronment of the end-user (U).

the following assumption: a program interacts with the environment by invoking
system calls, and the execution path taken by the program entirely depends on
the output of these calls [14]. In our particular context, this assumption means
that the triggering of a malicious behavior entirely depends on the output of the
system calls invoked. It follows that, to achieve our goal, it is sufficient to force
the system calls executed by the program in L to behave as they were executed
in U . To do that, the system calls, instead of being executed in L, are executed
in U , and L simulates their execution by using the output produced by U . It
is worth noting that only a small subset of all the system calls executed by the
program might actually affect the triggering of a malicious behavior. Examples
of such system calls are (i) those used to access user’s data (e.g., the file system
and the registry), (ii) those used to query particular system information (e.g.,
active processes, system configuration, open windows), and (iii) those used to
interact with the users (e.g., to process keyboard and mouse events). Therefore,
the collaboration of U is needed only for these system calls, while the remaining
ones can be executed directly in L.

Fig. 2 shows how our sample malicious program is executed and analyzed
leveraging our framework. The scenario of the analysis is the following. The
user U has received a copy of the program by email (or by another vector)
and he executes the program. With a conventional behavior-based detector the
program would be analyzed entirely on the host. With our framework instead,
the program is not executed locally but it is submitted to the security lab L,
that executes and analyzes the program with the cooperation of the user. The
new analysis environment thus becomes 〈L,U〉. All the system calls executed
by the program are intercepted. Our sample program initially executes some
system calls s1, . . . , s3 whose output does not depend on the environment (e.g.,
to allocate memory). These system calls are executed directly in L. Subsequently,

4

the program tries to detect whether the user is browsing a certain website: it
invokes s4 = GetForegroundWindow to get a reference to the window currently
active on the desktop of the user. As the output of this call highly depends on the
execution environment, L requests U to execute the call: L forwards s4 to U , U
executes s4 and sends back the output to L. The program does not notice what is
happening in the background and continues the execution. The next system call
is s5 = GetWindowText, which is used to get the title of the foreground window.
As one of its input arguments (hwnd1) is the output of a system call previously
executed in U , s5 is also executed in U . Supposing that the user in U is actually
visiting a website targeted by the program, the trigger condition is satisfied and
the program displays the fake login form to steal the user’s credentials. As this
activity involves an interaction with the user and such interaction is essential to
observe the complete behavior of the program, the system calls involved with
this activity are also forwarded to U , to get a realistic input. L can eventually
detect that there is an illegitimate information leakage.

The in the cloud execution of a potentially malicious program does not expose
the end-user to extra security risks. First, we confine the dangerous modifications
the program could make to the system in the environment of the security lab.
Second, more malicious behaviors can be detected and stopped, because the
analysis performed in the lab is more thorough. Third, the execution of the
program consumes less resources, as the user is in charge of executing a subset
of all the system calls of the program. Forth, annoying popups are still redirected
and shown to the user, but that would happen also if the program were executed
normally.

2.2 Exploiting diversity of end-users’ environments

The proposed framework allows to monitor the execution of a potentially mali-
cious program in multiple execution environments. Given the fact that end-users’
environments are very heterogeneous (e.g., users use different software with dif-
ferent configurations, visit different web-sites), it is reasonable to expect that
the completeness of the analysis improves with the increase of the number of
different environments used.

To analyze a program in multiple execution environments, it is sufficient
to run multiple instances of the analyzer, L1, . . . , Ln, such that each instance
cooperates with a different environment U1, . . . , Un to execute the system calls
that might affect the triggering of the malicious behaviors (i.e., the environments
used are those of n of the potential victims of the malicious program, chosen
according to some criteria). The security lab can thus observe how each analysis
environment 〈Li, Ui〉 affects the behavior of the program and can merge and
correlate the behaviors observed in each execution.

Fig. 3 shows how the analysis of our sample program is performed simultane-
ously in multiple execution environments 〈L1, U1〉, . . . , 〈L6, U6〉. Each execution
is completely independent from the others but the results of the analysis are
collected and correlated centrally by L. As U1, . . . , U6 are distinct environments,
we expect the forwarded system calls to produce different output (e.g., to return

5

L

L1

L2

L3

L4

L5

L6

U1

U2

U3

U4

U5

U6

Fig. 3. Diagram of the execution of multiple instances of the analysis of a suspicious
program in multiple execution environments 〈L1, U1〉, . . . , 〈L6, U6〉. The central entity
L aggregates the results of each analysis.

different window titles) and thus to cause the various instances of the analyzed
program to follow different paths. In the example, we have that the trigger con-
dition is satisfied only in U2 and U6, but the web sites being visited are different
(one user is visiting the web site of “Bancos do Brazil” and the other one the
web site of “Banco Itau”). Therefore, the correlation of the results reveals that
the program is effectively malicious and some of its trigger conditions.

3 Design and implementation

The two parties participating to the in the cloud analysis of a program are
the security lab, L for short, and the end-user (the potential victim), U for
short. In this section we describe the components we have developed for these
two parties to make such distributed execution possible. The current prototype
implementation is specific for Microsoft Windows XP, but the support for other
versions of the OS can be added with minimal efforts. At the moment, our
prototype can successfully handle all the system calls involving the following
system resources: file, registry keys, system and processes information, and some
graphical resources.

3.1 Executing a program in multiple environments

System calls hooking. To intercept the system calls executed by the ana-
lyzed program, we leverage a standard user-space hooking technique. We start
the process we want to monitor in a suspended state and then inject a DLL
into its virtual address space. The DLL hooks the functions KiIntSystemCall

and KiFastSystemCall, two small function stubs used by Microsoft Windows for
executing system calls [15, 16]. This approach allowed to simplify the develop-
ment and facilitated the integration of the framework into an existing malware
detector.

6

System calls proxying. A user-space application cannot directly access the
data structure representing a particular resource of the system (e.g., a file, a
registry key, a mutex, a window) but it has to invoke the appropriate system
calls to obtain an opaque reference, a handle, to the resource and to manipulate
it. We exploit this characteristic of the operating system to guarantee a correct
functioning of the analyzed program, and to simulate the existence of resources
with certain properties that exists on a remote system, but do not in the system
in which the program is executed. When a system call is invoked, we analyze
the type of the call and its arguments to decide how to execute it: locally or
remotely.

To differentiate between local and remote calls, we check if the system call
creates a handle or if it uses a handle. To create a handle means to open an
existing resource or creating a new one (e.g., to open a file), while to use a
handle means to manipulate the resource (e.g., to read data from a open file).
In the first case, we analyze the resource that is being opened and according to
some rules (details follow) we decide whether the manipulation of the resource
might influence the triggering of a malicious behavior. If not, we consider the
resource and the system call local and we execute the call in L. Otherwise, we
consider the resource and the system call remote and we forward and execute
the latter in U . When we intercept a system call that uses a handle, we check
whether the resource being manipulated (identified by the handle) is local or
remote and we execute the call in L or U accordingly.

Fig. 4 represents the various components we have developed (highlighted)
to intercept system calls and to execute them either locally or remotely. All
system calls executed by the analyzed program P are intercepted. Local system
calls are passed to the kernel as is, remote ones are forwarded to the system of
the end-user. To execute a remote syscall in U , L serializes the arguments of
the system call and sends them to U . The receiver deserializes the arguments,
prepares the program state for the execution (i.e., by setting up the stack and the
registers), and then executes the call. When the syscall returns, U serializes the
output arguments and sends them back to L. Finally, L deserializes the output
arguments, where the program expects them, and resumes the normal execution.
The program P cannot notice when a system call is executed elsewhere, because
it finds in memory the expected output.

On paper, the mechanism for serializing and proxying a system call looks
simple; however, its implementation is very challenging. The Microsoft Windows
system call interface, known as native API, is poorly documented. We put a lot
of reverse engineering efforts to understand how to properly serialize all system
calls and their arguments. After all, the Windows native API turned out to be
well suited for proxying and to simulate the existence of resources that physically
reside on a different system. No system call can operate concurrently on two
resources, resources can always be distinguished, and system calls manipulating
the same resource are always executed in the same environment.

Choosing remote system calls. Remote system calls are selected using a
whitelist. The whitelist contains a list of system calls names and a set of con-

7

OS Kernel

P

Syscall hooking

Syscall (de) seri-
alization

Syscall hooking

Syscall
(de)serialization

S
ec

u
r
it
y

la
b

(L
)

lo
c
a
l

sy
sc

a
ll

OS Kernel

Syscall execution

Syscall
(de)serialization

Syscall execution

Syscall
(de)serialization

E
n
d
-u

se
r

(U
)

remote syscall

return value & output arguments

Fig. 4. System calls interception and remote execution (P is the analyzed program)

ditions on the arguments. Examples of the system calls we consider remote
are: NtOpenKey, NtCreateKey (if the arguments indicate that the key is be-
ing opened for reading), NtOpenFile, NtCreateFile (if the arguments indicate
that the file is being opened for reading), NtQuerySystemInformation, and
NtQueryPerformanceCounter. The handles returned by these calls are flagged
as remote, by setting the most significant bits (which are unused). Thus, we
can identify subsequent system calls that access a remote resource and we have
the guarantee that no overlap between handles referencing local and remote
resources can occur.

GUI system calls. User’s inputs and GUI resources often represent trigger
conditions. For this reason it is important to let the analyzed program to in-
teract with realistic user’s inputs (i.e., GUI events) and resources. Although in
Microsoft Windows all the primitives of the graphical user interfaces are normal
system calls, to facilitate the proxying, we rely on Windows Terminal Services
subsystem to automatically forward the user interface of the monitored applica-
tion from the lab to the user’s machine. In particular, our prototype uses seamless
RDP (Remote Desktop Protocol) [17], that allows to export to a remote host the
graphical interface of a single application instead of the entire desktop session.
Therefore, if the analyzed program executed in the lab displays the user a fake
login form and blocks for inputs, the form is transparently displayed in U and
the received user’s events (keystrokes and mouse clicks) are sent back to the
program running in L.

The solution based on RDP allows only to forward a GUI to a remote sys-
tem. However, the session in which the application is run belongs to L. Thus,
attempts to query the execution environment would return the status of the en-
vironment in L. As an example let us consider the system calls associated with
the API functions GetForegroundWindow and GetWindowText, used by our sam-
ple malware (Fig. 1) to check if the victim is visiting the website of a Brazilian
bank. Without any special handling these system calls would return the windows
of the session (on L). We want instead these calls to return information about
the windows found in the remote environment. To do that, we execute them
remotely as any other remote system call.

8

One-way isolation. One of the goal of our framework is to protect the system
of the end-user from damages that could be caused by the analyzed program,
without interfering with the execution of the program. The approach we adopt
to achieve this goal is based on one-way isolation [18]: “read” accesses to remote
system resources are allowed, but “write” accesses are not and are performed
locally. That is, if the program executes a system call to create or to modify a
resource we normally consider remote, we treat the resource as local and do not
proxy the call. To guarantee a consistent program state, we also execute locally
all subsequent system calls involving such resource.

In case the analyzed program turned out to be benign, system changes made
in the lab environment could be committed to end-user’s environment. Our pro-
totype currently does not support this feature, nor does it support the correct
isolation of a program that accesses a resource that is concurrently accessed by
another.

3.2 An in the cloud behavior-based malware detector

In order to demonstrate how our framework can naturally complement behavior-
based malware detectors, we have integrated it in an existing detector [2], which
is based on virtual machine introspection and is capable of performing fine
grained information flow tracking and to identify data-flow dependencies between
system calls arguments. The malware detector is built on top of a customized
system emulator, which supports system calls interception and taint analysis
with multiple taint labels. As our framework works directly inside the guest, the
integration of the two components required only a trivial modification to allow
the detector to isolate the system calls executed by the suspicious program from
those executed by our prototype to proxy system calls and to ignore the latter.

To monitor the execution of a suspicious program in multiple end-users’ en-
vironments it is sufficient to run multiple instances of the enhanced malware
detector just described, where each instance collaborates with a different end-
user’s machine, and to merge the results. We have not yet addressed the problem
of correlating the results of multiple analyses.

4 Evaluation

This section presents the results of testing our prototype implementation of the
framework and presents a conceptual comparison of our approach with existing
solutions that try to systematically explore all program paths. We evaluated the
prototype with benign and malicious programs. The results of the evaluation
on benign programs witness that our approach does not interfere with normal
program execution and that it introduces a negligible overhead. Moreover, the
evaluation demonstrates that the analysis of a piece of malware in multiple
execution environments significantly improves the completeness of the results:
with the collaboration of just four different execution environments we observed
a ∼15% relative improvement of the code coverage.

9

Program Action Local Remote

ClamAV Scan (remote) files with (remote) signatures 166,539 1,238
Eudora Access and query (remote) address book 1,418,162 11,411
Gzip Compress (remote) files 19,715 93
MS IE Open a (remote) HTML document 1,263,385 10,260
MS Paint Browse, open, and edit (remote) pictures 1,177,818 9,708
Netcat Transfer (remote) files to another host 16,007 93
Notepad Browse, open, and edit (remote) text files 929,191 7,598
RegEdit Browse, view, and edit (remote) registry keys 1,573,995 13,697
Task Mgr. List (remote) running processes 33,339 241
WinRAR Decompress (remote) files 71,195 572

Table 1. List of tested benign programs, actions over which each program was
exercised, and number of locally and remotely executed system calls (GUI system
calls are not counted).

Experimental setup. The infrastructure used for the evaluation corresponds
to the one described in Section 3.2, with the difference that, instead of performing
behavior-based detection, we tracked the basic blocks executed in each run of
the experiments. To simulate the lab environment we used a vanilla installation
of Windows XP running inside the emulator, while as users’ environments we
used some other machines and we acted as the end-users.

Evaluation on benign programs. To verify that our framework did not inter-
fere with the correct execution of the programs, we executed through our proto-
type multiple benign applications. The tested programs included both command
line utilities and complex GUI applications. Table 1 reports the set of programs
tested, together with the actions over which each program was exercised and
with the number of local and remote system calls. We interacted with each pro-
gram to perform the operations reported in the table. As we ran the experiments
with the proxying of all supported system calls enabled, the numbers in the table
indicate the total number of remotely executed calls and not only those involved
with the described actions. For example, we used ClamAV to scan all the content
of a directory. Through our framework the anti-virus transparently scanned a
directory existing only in the simulated end-user’s system, using a database of
signatures which also existed only in the remote system.

We successfully executed all the actions reported in the table and verified that
the resources that were accessed effectively corresponded to those residing on the
system of the end-users. The number of system calls executed indicates that the
programs used for the evaluation are quite complex and thus that our results are
good representatives. We can conclude that: (i) system calls accessing remote
resources do not interfere with system calls accessing local resources, (ii) our
framework does not interfere with the correct execution of programs, and (iii)
system calls proxying allows to transparently access system resources residing
on remote hosts.

Performance overhead. We used a subset of the benign programs of Table 1
to evaluate the overhead introduced by our framework on the systems of the

10

user and of the security lab. We observed that the number of remotely executed
system calls depended on the type of applications and the actions exercised;
consequently the overhead depended on these factors. On the system of the
end-user, we measured a CPU, memory, and network usage that was roughly
proportional to the number of remotely executed system calls. Nevertheless,
in all cases, the resources consumed never exceeded the resources consumed
when the same programs were executed natively on the system: on average we
observed a 60% and 80% reduction of CPU and memory usage respectively. On
the other hand, we noticed a slight increase of the resource usage in the system
in the lab: on average we observed a 36% and 77% increase of CPU and memory
usage respectively. We also measured that, on average, 956 bytes have to be
transferred over the network to remotely execute a system call. For example, the
execution of RegEdit required in total to transfer 1030Kb of data. In conclusion,
our framework has negligible performance impact on the end-user and the impact
on the security lab, without considering the overhead introduced by the analysis
run on the framework, is sustainable and can be drastically reduced by improving
the implementation (e.g., by compressing data before transmission).

Evaluation on malicious programs. We evaluated our framework against
multiple malicious programs representing some of the most common and recent
malware families. The goal of the evaluation was to measure whether the anal-
ysis of multiple executions of the same piece of malware, in different end-users’
environments, gives more complete results then the analysis of a single execu-
tion of the program in an unrealistic environment (i.e., the vanilla installation
of Windows XP).

To quantify the completeness of the results we measured the increase of code
coverage. We initially executed batch each malicious program in the environ-
ment of the security lab and we recorded the set of unique basic blocks executed
(excluding library code). Subsequently, we ran each malicious program multi-
ple times through our prototype, each time in collaboration with a different
end-user’s environment, and again we recorded the set of unique basic blocks
executed. Therefore, if b0 represents the set of basic blocks executed in the en-
vironment of the security lab, and bi, i > 0, represents the set of basic blocks
executed with the collaboration of the ith end-user’s environment, the increase
of code coverage after the ith execution is measured as |bi \ (bi−1 ∪ ... ∪ b0)|.

Fig. 5 reports the relative increase of code coverage (using b0 as baseline)
measured during our evaluation, leveraging just four different end-users’ envi-
ronments and 27 different malware samples. The figure clearly shows that in the
majority of the cases we have a noticeable relative increase of the code cover-
age; the average increase is 14.53%, with a minimum of 0.24%, to a maximum
of 60.92%. It is worth noting that, although the observed improvements appear
minimal, most of the time small percentages correspond to the execution of hun-
dreds of new basic blocks. It is also important to note that certain environments
contributed to improve the results with certain malware but did not contribute
at all with others. Indeed, the four environments contribute respectively on av-
erage 25.35%, 30.86%, 18.14%, and 25.68% of the total increase observed. For

11

 0

 10

 20

 30

 40

 50

 60
R

el
at

iv
e

in
cr

ea
se

 o
f

 c
od

e
co

ve
ra

ge
 (

%
)

Malware

Environment 1
Environment 2
Environment 3
Environment 4
Average

Fig. 5. Relative increase of code coverage obtained by analyzing the tested malware
samples in multiple execution environments.

example, during the analysis of a variant of Satiloler, we noticed that the
monitoring of web activities was triggered only in one of the four environments,
when we visited a particular website. Thus, in this environment we observed a
16.54% increase of the relative code coverage, corresponding to the execution of
about 140 new unique basic blocks; the observed increase in the other environ-
ments did not exceed 3%.

In conclusion, we believe the relative improvements observed during the eval-
uation testify the effectiveness of the proposed approach at enhancing the com-
pleteness of dynamic analysis.

Conceptual comparison with input oblivious analyzers. Input oblivi-
ous analyzers are tools capable of analyzing exhaustively a malicious program
by systematically forcing the execution of all program paths [7, 8]. When an
input-dependent control flow decisions is encountered, both program branches
are explored. Such systematic exploration is achieved by manipulating the in-
puts and updating the state of the program accordingly, leveraging constraint
solvers, to force the execution of one path and then of the other.

The framework we propose in this paper addresses the same problem through
a completely different approach. Although our methodology might appear less
systematic, it has the advantage that, by leveraging real execution environments,
it can deal with complex trigger conditions that could exhaust the resources of in-
put oblivious analyzers. For example, trigger conditions dominated by a complex
program structure might easily generate an unmanageable number of paths to
explore and unsolvable constraints. Indeed, several situations are already known
to thwart these systems [19, 20]. Examples of other situations that can easily
render input oblivious analyzers ineffective are malicious programs with payload
delivered on-demand (e.g., the Conficker malware [21]) and programs with hid-
den malicious functionality, like rouge anti-viruses, where the trigger conditions
consist in multiple complex asynchronous events. As we assume that sooner or
later the malicious program will start to reap victims, we can just sit and watch
what a program does in each victim’s system, without being affected by the
complexity of trigger conditions. At the first sign of malicious activity, we con-

12

sider the program as malicious; then we can notify all victims, but we could also
continue to analyze the program in some of the affected systems.

5 Discussion

Privacy and security issues. The framework we propose can clearly raise
privacy issues: by controlling the system calls executed on the systems of an
end-user, the security lab can access sensitive user’s data (e.g., files, registry
keys, GUI events). We are convinced that, considering the current trend, the
privacy issues introduced by our approach are comparable to already existing
issues. For example, commercial behavior-based detectors incorporate function-
ality, typically enabled by default, to submit to labs suspicious executables or
memory dumps of suspicious processes (which can contain sensitive user data).
Thus privacy of users is already compromised. Moreover, the security lab is just
a special provider of cloud services: users have to trust it like they trust other
providers (e.g., email providers and web storage services).

Detection and evasion. Our framework is sensitive to various forms of de-
tection and evasion. To prevent evasion attacks based on the identification of
emulated or analysis environments, it would be sufficient to build our frame-
work on top of undetectable systems for malware analysis [22]. The limitations
of our current implementation (e.g., lack of support for inter-process commu-
nication) can also offer opportunities for detection and evasion. We believe the
majority of the attacks will not be possible with a complete implementation.

6 Related work

Malware analysis in the cloud. CloudAV is the first implementation of an
in the cloud malware detector through which end-users delegate to a central
authority the task of detecting if an unknown program is malicious or not [23].
A similar approach, called “collective intelligence”, has also been introduced in
a commercial malware detector [24]. Such centralized detection gives two major
benefits. First, the analysis no longer impacts on end-users’ systems, and being
centralized, it can be made more fine-grained. For example CloudAV analyzes
programs simultaneously, with multiple off-the-shelf detectors. Second, the re-
sults of the analysis can be cached to serve future requests of other users at no
cost. This paper further enhances these existing solutions by proposing a frame-
work that leverages the systems of potential victims for making the behavioral
analysis much more complete.

Behavior-based malware analysis. Our proposed solution is not a malware
detector, but is rather a framework that enhances the capabilities of existing
dynamic behavior-based detectors. Examples of malware detectors that could
integrate our approach are TTAnalyze [1], Panorama [3], CWSandbox [25], and
[2]. The problem of the incompleteness of dynamic approaches for malware anal-
ysis has been addressed by Moser et al. and Brumley et al. [7, 8]. Both systems
allow the automatic exploration of multiple execution paths. A thorough com-
parison between these systems and ours is presented in Section 4.

13

Sandboxed programs execution. Sun et al. introduced a one-way isolation
technique to safely execute untrusted programs [18]. Their approach consists in
isolating the effects of an untrusted program from the rest of the system by
intercepting system calls that modify the file-system and redirecting them to a
cache, invisible to other processes. When the untrusted program terminates, the
user can choose to discard these modifications, or to commit them to the real
system. The approach we adopt to proxy the access to remote system resources
is similar to the one proposed by Sun et al.

Remote system call execution. Remote system call execution has been suc-
cessfully used to implement a high-throughput computation environment based
on Condor [26], where files stored on remote nodes of the environment are made
accessible locally and transparently by proxying the appropriate system calls.
Similarly, the V2 project [27] includes support for remote system call execution.
Our framework adopts the same strategy, but leverages system call proxying to
achieve a completely different goal.

7 Conclusion

In this paper, we presented a framework that enables sophisticated behavior-
based analysis of suspicious programs in multiple realistic and heterogeneous
environments. We achieve this goal by distributing the execution of the pro-
gram between the security lab (with unlimited computational resources) and
the environments of potential victims of the program (which are heterogeneous
by definition and might affect differently the behavior of the analyzed program),
by forwarding to the latter certain system calls. We have implemented an ex-
perimental prototype to validate our idea and integrated it into an existing
behavior-based malware detector. Our evaluation demonstrated the feasibility
of the proposed approach, that the overhead introduced is very small, and that
the analysis of multiple execution traces of the same malware sample in multiple
end-users’ environments can improve the results of the analysis.

References

1. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A Tool for Analyzing Malware.
In: Proceedings of the Annual Conference of the European Institute for Computer
Antivirus Research. (2006)

2. Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.C.: A Layered Ar-
chitecture for Detecting Malicious Behaviors. In: Proceedings of the International
Symposium on Recent Advances in Intrusion Detection. (2008)

3. Yin, H., Song, D., Egele, M., Kirda, E., Kruegel, C.: Panorama: Capturing System-
wide Information Flow for Malware Detection and Analysis. In: Proceedings of the
Conference on Computer and Communications Security. (2007)

4. NovaShield: http://www.novashield.com/.
5. Panda Security: True Prevent http://research.pandasecurity.com/archive/

How-TruPrevent-Works-_2800_I_2900_.aspx.
6. Sana Security: http://www.sanasecurity.com/.

14

7. Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Malware
Analysis. In: Proceeding of the IEEE Symposium on Security and Privacy. (2007)

8. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Towards
Automatically Identifying Trigger-based Behavior in Malware using Symbolic Ex-
ecution and Binary Analysis. Technical Report CMU-CS-07-105, Carnegie Mellon
University (2007)

9. Chabbi, M.: Efficient Taint Analysis Using Multicore Machines. Master’s thesis,
University of Arizona (2007)

10. Nightingale, E.B., Peek, D., Chen, P.M., Flinn, J.: Parallelizing security checks on
commodity hardware. In: Proceedings of the international Conference on Archi-
tectural Support for Programming Languages and Operating Systems. (2008)

11. Ho, A., Fetterman, M., Clark, C., Warfield, A., Hand, S.: Practical Taint-based
Protection Using Demand Emulation. In: Proceedings of the EuroSys Conference.
(2006)

12. F-Secure: Trojan Information Pages: Bancos.VE http://www.f-secure.com/

v-descs/bancos_ve.shtml.
13. NoAH Consortium: Containment environment design. Technical report, European

Network of Affined Honeypots (2006)
14. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A Secure Environment for

Untrusted Helper Applications. In: Proceedings of the USENIX Security Sympo-
sium. (1996)

15. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-Wes-
ley (2006)

16. Russinovich, M., Solomon, D.: Microsoft Windows Internals. 4th edn. Microsoft
Press (2004)

17. Cendio: SeamlessRDP – Seamless Windows Support for rdesktop http://www.

cendio.com/seamlessrdp/.
18. Sun, W., Liang, Z., Sekar, R., Venkatakrishnan, V.N.: One-way Isolation: An

Effective Approach for Realizing Safe Execution Environments. In: Proceedings of
the Symposium on Network and Distributed Systems Security. (2005)

19. L. Cavallaro and P. Saxena and R. Sekar: On the Limits of Information Flow Tech-
niques for Malware Analysis and Containment. In: Proceedings of the Conference
on Detection of Intrusions and Malware & Vulnerability Assessment. (2008)

20. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Impeding Malware Analysis Using Condi-
tional Code Obfuscation. In: Proceedings of the Annual Network and Distributed
System Security Symposium. (2008)

21. Porras, P., Saidi, H., Yegneswaran, V.: An Analysis of Conficker’s Logic and Ren-
dezvous Points. Technical report, SRI International (2009)

22. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware Analysis via Hardware
Virtualization Extensions. In: Proceedings of the Conference on Computer and
communications security. (2008)

23. Oberheide, J., Cooke, E., Jahanian, F.: CloudAV: N-Version Antivirus in the
Network Cloud. In: Proceedings of the USENIX Security Symposium. (2008)

24. Panda Security: From Traditional Antivirus to Collective Intelligence (2007)
25. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis

using CWSandbox. IEEE Security and Privacy (2007)
26. Livny, M., Basney, J., Raman, R., Tannenbaum, T.: Mechanisms for High Through-

put Computing. SPEEDUP Journal (1997)
27. VirtualSquare: Remote System Call http://wiki.virtualsquare.org/index.

php/Remote_System_Call.

15

