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Abstract. We present Conqueror, a software-based attestation scheme
for tamper-proof code execution on untrusted legacy systems. Beside pro-
viding load-time attestation of a piece of code, Conqueror also ensures
run-time integrity. Conqueror constitutes a valid alternative to trusted
computing platforms, for systems lacking specialized hardware for attes-
tation. We implemented a prototype, specific for the Intel x86 architec-
ture, and evaluated the proposed scheme. Our evaluation showed that,
compared to competitors, Conqueror is resistant to static and dynamic
attacks and that our scheme represents an important building block for
realizing new security systems.

1 Introduction

Code attestation is the process of verifying the integrity of a piece of code ex-
ecuting in an untrusted system. Besides integrity verification, code attestation
can also be used to execute an arbitrary piece of code in an untrusted system
with the guarantee that the code is run unmodified and in an untampered execu-
tion environment. In the last years, hardware extensions, such as TPM chips [1],
have been proposed for securing computations, including performing attestation.
However, these extensions are not yet available on every computing device. In
such a situation, pure software-based solutions are the only viable alternative.

Several software-based attestation schemes have been proposed in litera-
ture [2–7]. All these schemes are based on a challenge-response protocol involving
two parties: an untrusted system and a verifier. The verifier issues a challenge for
the untrusted system, where the challenge consists in computing the checksum
of certain memory locations and properties of the execution environment. The
checksum is computed by executing a particular attestation routine, or checksum
function. Once computed, the checksum is sent back to the verifier. The verifier
relies on the time to determine whether the checksum is genuine or if it could
have been forged. Indeed, attestation routines are constructed such that any
tampering attempt results in a noticeable increase of the execution time. Thus,
a checksum received too late is a symptom of an attack.

The complexity of the attestation routine depends on the hardware charac-
teristics of the untrusted system on which it has to be executed. Indeed, the
output of the routine is guaranteed to be genuine only if it is executed in a prop-
erly configured execution environment. In complex hardware architectures, such



as the ones used in personal computers, there exist several configurations of the
execution environment that can be exploited by an attacker to thwart attesta-
tion. Therefore, the attestation routine must ensure, and prove to the verifier,
that the execution environment in which it executes satisfies all the require-
ments to impede attacks. In other words, the attestation routine must attest its
own code, but also the execution environment. Intuitively, the requirements for
tamper-proof attestation are that the attestation routine must be executed at
the highest level of privilege (i.e., at the same level of the most powerful attacker)
and that its execution must be uninterruptible. Practically speaking, in a legacy
system with no hardware support for virtualization, that means that the routine
must execute in system mode (i.e., the privilege level of the operating system)
and that all interrupts must be disabled, to prevent the attacker to regain the
control of the execution at some point. Unfortunately, even if the requirements
are very well defined, guaranteeing that they are satisfied in a complex execu-
tion environment where attacker and defender have the same privileges is a very
challenging problem.

In this paper we present Conqueror, a software-based scheme for tamper-
proof code execution on untrusted legacy systems. Conqueror provides a secu-
rity primitive that allows to build applications that require the availability of a
trusted computing base. Pragmatically speaking, Conqueror guarantees that an
arbitrary piece of code can be executed untampered in an untrusted system, even
in the presence of malicious software. Conqueror has been developed to address
the limitations of Pioneer, the state-of-the-art software-based attestation solu-
tion [6]: Conqueror is immune to all attacks that are known to defeat Pioneer,
and it can also be used on untrusted systems where the attacker could leverage
hardware virtualization extensions to hold control of the execution environment
in which the attestation routine executes. Conqueror adopts a variation of the
challenge-response protocol used in traditional attestation schemes: the chal-
lenge does not consist in a seed to initialize a constant attestation routine, but
instead consists in an entire routine, that is different each time, self-decrypting,
and obfuscated. The intent is to make it impossible for an attacker to reverse
engineer the logic of the checksum computation, and to facilitate the hiding of
the sensitive operations that Conqueror needs to perform to attest that the state
of the environment executing the code impedes any attack. The strength of this
approach is that we are drastically increasing the time needed by an attacker to
forge a checksum.

We experimentally demonstrate our claims about Conqueror’s resistance to
attacks. We show that even a preliminary low-level analysis of the code of Con-
queror’s one-time attestation routine (i.e., disassembly), which is necessary to
perform any subsequent meaningful analysis for reconstructing the semantics,
costs about the same time required to execute the routine. Moreover, we show
that Conqueror is also resilient to dynamic attacks performed by an attacker
leveraging a hardware-assisted hypervisor. Finally, to demonstrate Conqueror’s
potential, we present a proof-of-concept software-based primitive to launch se-
curely a hypervisor in a running untrusted system, to segregate the system into
a restricted guest. This primitive could be used in place of skinit [8] and
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senter [1] on untrusted systems with no hardware support for trusted com-
puting.

2 State-of-the-art of attestation on legacy systems

This section presents Pioneer, the major Conqueror’s competitor. Both systems
target the same hardware architecture, but they use very different approaches.
Moreover, Conqueror is resistant to attacks that are known to defeat Pioneer.

Pioneer is a software-based attestation scheme that can be used to establish
a trusted computing base, called dynamic root of trust, on an untrusted legacy
system. Pioneer is specific for Intel x86 with EM64T extensions. The code of
the dynamic root of trust is guaranteed to be unmodified and to execute in a
tamper-proof execution environment. The dynamic root of trust measures the
integrity of an arbitrary executable, and then runs the executable in the trusted
execution environment. The dynamic root of trust is established using a ver-
ification function. The verification function is an extension of a conventional
checksum function and additionally includes a hash function to verify the in-
tegrity of an executable. The verification function is self-checking (i.e., it attests
its own code), and it attests the execution environment.

The Pioneer verification function is composed by three components: (i) a
checksum function, (ii) a send function, and (iii) a hash function. The checksum
function is used to compute a checksum over the entire verification function and
to setup the execution environment in which the other functions are guaranteed
to run untampered. Since the sensitive component of Pioneer is the checksum
function, we do not overview the others.

As in the majority of code-attestation schemes, in Pioneer the checksum
function is known a priori and the challenge issued by the verifier consists in
a seed that initializes this function. Therefore, an attacker has complete access
to the checksum function and can analyze it offline to find weaknesses. The
checksum function has been constructed manually to be time-optimal: no ad-
versary function that can compute the correct checksum without introducing
a noticeable overhead exists. Time-optimality is achieved using operations that
prevent parallelization, that have a low variance execution time, and by execut-
ing these operations iteratively, to maximize the overhead of the attacker. Most
importantly, the checksum function is responsible for initializing the execution
environment and for attesting the correct initialization.

Unfortunately, since the hardware architecture for which Pioneer was devel-
oped is full of subtle details, researchers have found ways to thwart the setup
of the dynamic root of trust without being noticed by the verifier. For example,
it is possible to perform the entire checksum computation in user-space and to
regain the control of the execution through exceptions without corrupting the
checksum. Another attack consists in desynchronizing data and code pointers
and to execute a modified checksum function that computes the checksum of
a pristine function residing elsewhere in memory [9]. Finally, Pioneer’s assump-
tions that the most powerful attacker operates in system mode does not hold on
new commodity hardware with support for virtualization [8, 10].
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3 Conqueror overview

In this section we give an overview of Conqueror, our scheme for software-based
code attestation and tamper-proof code execution on untrusted legacy systems
(Intel x86). Conqueror does not suffer the problems that affect the state-of-the-
art attestation scheme for this class of systems.

3.1 Threat model

Conqueror has been developed to operate in the following adversary scenario.
We assume that the untrusted system has been compromised, and that the
attacker operates at the highest privilege level: system mode (ring 0) if the
system has no support for hardware-based virtualization, hypervisor mode if the
support is available. However, we assume the adversary cannot operate in system
management mode, that he cannot perform hardware-based attacks (e.g., DMA-
based attacks or overclocking), and that he cannot leverage a pristine or a more
powerful system to break the attestation scheme. The final assumption is that
the untrusted system supports a single thread of execution (e.g., no SMP).

3.2 Conqueror architecture and protocol

As any other software-based code attestation scheme, Conqueror is based on a
challenge-response protocol, where a verifier challenges the untrusted system.
The central component of Conqueror is the Tamper-Proof Environment Boot-
strapper (TPEB). As the name says, the TPEB is responsible for setting up the
environment in the untrusted system for the tamper-proof execution of an arbi-
trary executable. Figure 1 shows the layout and the protocol of Conqueror (the
numbers in the figure represent the temporal ordering of the events). The TPEB
is composed by a checksum function and a send function. The checksum func-
tion computes the checksum to attest the integrity of the TPEB itself and the
integrity of the executable. The send function transmits the computed checksum
value to the verifier and invokes the executable. The send function is logically
separated from the checksum function because it is hardware dependent (i.e., it
depends on the network card installed on the untrusted system).

In Conqueror the verifier generates the checksum function on demand, such
that each function differs considerably from the others. Differences are both syn-
tactic and semantic. Moreover, functions are obfuscated using multiple obfusca-
tion schemes. The attacker has no access to the checksum function ahead of time
and cannot perform any offline analysis nor optimization [7]. In Conqueror, the
newly generated checksum function is initially sent encrypted to the untrusted
system. Later on, at time t0, the verifier transmits the key for decryption. Since
the verifier knows precisely in which execution environment the function must
be executed and knows the hardware characteristics of the untrusted system,
it can compute the expected checksum value and can estimate the amount of
time that will be required by the untrusted system to decrypt, to execute the
function, and to send back the result. Let t1 = t0 +∆t be the time by which the
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Fig. 1. Overview of Conqueror

correct checksum has to be received by the verifier to be considered authentic;
∆t is an upper bound, empirically estimated, of the maximum time requested
by the untrusted system to compute the checksum in the absence of an attack.
If the verifier does not receive the correct checksum by t1, then the checksum
is considered forged and the execution environment not tamper-proof. In a tra-
ditional checksum function (e.g., that used in Pioneer), where the function is
known a priori and can be analyzed offline, the attacker has ∆t time to execute
a malicious function to forge the checksum. In Conqueror, the attacker has ∆t

to (i) analyze the checksum function, (ii) generate a new function capable of
forging the checksum, and (iii) execute the generated function. Alternatively,
the attacker would have to emulate the entire execution of the checksum func-
tion. Differently from traditional checksum functions, the ones in Conqueror are
generated automatically; for this reason we cannot guarantee a low collision rate
nor that their implementation is optimal (in terms of execution time and in code
size). Nevertheless, given the small time frame available, there is no opportunity
for the attacker to reverse engineer their semantics, nor to emulate the execution,
and to forge checksums in time.

Since Conqueror targets a very complex hardware architecture, particular
attention has to be devoted to prevent checksum forgery, by tampering either
the checksum function or the execution environment. To attest the trustworthi-
ness of the environment, the verifier embeds in the checksum function several
operations whose behavior and execution time depend on the configuration of
the environment (e.g., instructions that raise exceptions when executed without
enough privileges).

An attacker who tampers the execution of the checksum function will cor-
rupt the checksum, or will incur in a time overhead that will cause the overall
checksum computation to exceed the expected time ∆t. For these reasons, Con-
queror guarantees that a correct checksum, received by the verifier by t1, is the
proof that the checksum function has been executed unmodified and that the
bootstrap of the tamper-proof execution environment succeeded.
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4 Conqueror implementation

Conqueror current implementation is specific for the Intel x86 architecture and
so are the details of the implementation presented in this section. However, we
believe the same scheme can be used, as is, on the Intel x86-64 architecture.

4.1 Tamper-Proof Environment Bootstrapper

The layout in memory of the TPEB is shown in Figure 2. The TPEB consists
of the checksum function, its data, and the send function. For simplicity, the
TPEB is located at a fixed address (BASE) and in consecutive memory pages.
Moreover, the executable follows immediately the TPEB, and the overall buffer
is padded to a multiple of page size (SIZE). We assume that the TPEB is already
initialized on the untrusted system, with the exception of the checksum function.
The checksum function and its data reside in a dedicated memory page (starting
from BASE) and all unused bytes in this page are initialized randomly, to hide
code and data. This page is generated on-demand by the verifier and transmitted
encrypted to the untrusted system. The latter stores in memory, at the BASE
address, the page and waits for the decryption key. Attestation begins when
the verifier sends out the key. The reason for encryption is to exclude from the
measurement the time required to transmit and prepare the TPEB.

4.2 Checksum function

The checksum function is composed by a prologue, a checksum loop, and an
epilogue (Figure 2). The prologue decrypts the rest of the page containing the
checksum function, initializes the execution environment for the remaining of
the computation, and invokes the checksum loop. The checksum loop (described
in Section 4.2) computes the checksum of the memory pages containing its own
code, the send function, and the executable, (i.e., from BASE to BASE + SIZE),
and invokes the epilogue. The epilogue invokes the send function, which in turn
invokes the executable.

The checksum function computes the checksum by combining multiple check-
sum gadgets. In the current implementation the checksum size is 128 bits. A
gadget (ci) is a small code snippet that receives in input the address of a mem-
ory location and updates the running value of the checksum, according to the
content of the memory. We refer to these gadgets as active, since they are in-
tentionally executed by the checksum function. The purpose of an active gadget
is twofold. First, each gadget contributes to the computation of the checksum
in a different way. Thus, the correct checksum can be computed only if all the
gadgets are executed in the proper order and with the proper arguments. Sec-
ond, certain gadgets perform additional operations to verify the trustworthiness
of the execution environment and, in case the environment has been tampered,
they either corrupt the checksum or introduce a time overhead. Since gadgets
are scattered around the memory, differ syntactically and semantically from one
checksum function to another, and are obfuscated, it becomes very difficult for
the attacker to reconstruct the exact logic of the checksum function.
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Fig. 2. Overview of the TPEB

In addition to active gadgets, the checksum function relays on passive gadgets
(hj), or handlers, that are not invoked directly by the checksum function, but
rather as the result of an unexpected event that can occur only in a tampered ex-
ecution environment. If executed, passive gadgets corrupt the checksum. Passive
gadgets are registered during the prologue, by replacing the Interrupt Descrip-
tor Table (IDT) with a new one embedded within the TPEB, and cannot be
disabled by the attacker: an improper configuration of these gadgets will result
in a wrong checksum.

Prologue. The prologue (Figure 3) is a small routine that decrypts the rest
of the page and initializes the trusted execution environment. More precisely,
the prologue disables all maskable interrupts (line 2), decrypts the rest of the
page (line 4 and 5), and installs custom interrupts handlers (line 7). Custom
handlers are installed by updating the address of the interrupt descriptor table
(IDT). The new address is set to a location, within the memory page containing
the checksum function, that holds a pre-initialized IDT (Figure 2). The mapping
between interrupts and handlers (the content of the IDT) is chosen by the verifier
and not known to the attacker. The handlers (hi in Figure 2), or passive gadgets,
are a special type of gadget: like normal gadgets they modify the running value
of the checksum, but they terminate their execution with a special instruction to
return to normal execution (i.e., iret). Furthermore, handlers are never invoked
explicitly by the checksum loop but only in response to interrupts or exceptions.

The purpose of the prologue is twofold. First, by disabling maskable inter-
rupts (pin-based interrupts generated by the peripherals) we inhibit the asyn-
chronous execution of all handlers. Second, by installing custom interrupt han-
dlers that update the checksum value, we can tell whether any interrupt or ex-
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ception occurred during the computation of the checksum. If maskable interrupts
are successfully disabled, no asynchronous interrupt occurs, and the checksum
is not corrupted because no interrupt handler is fired. Similarly, if the checksum
loop executes privileged instructions, and the checksum function is executed in
system mode, no exception occurs and no exception handler corrupts the check-
sum. On the other hand, any attempt to execute the checksum function in user
mode results in an exception, in the execution of the corresponding handler, and
in a corruption of the checksum value.

By positioning the IDT in the same memory page of the checksum function,
we implicitly certify the content of the table. The only opportunity for the at-
tacker is to intercept and simulate a successful update of the IDT. For example,
the attacker could emulate the execution of the prologue or execute the pro-
logue in user-space, such that the update of the IDT will raise an exception and
will be intercepted. Then, the attacker could install his own malicious IDT and
simulate a successful disabling of maskable interrupts. We prevent this attack
by including in the checksum loop a special gadget that queries the address of
the IDT and updates the running value of the checksum accordingly. Therefore,
attacker’s attempts to relocate the IDT will result in a corrupted checksum.
Further details about the aforementioned gadget and about why its execution
cannot be detected by the attacker are given in Section 4.2.

In conclusion, a correct value of the checksum, received by the verifiers within
the expected time, certifies that the prologue is executed successfully, that the
checksum function is executed at the maximum privilege level, and that the
attacker cannot interrupt the execution using interrupts or exceptions.

Checksum loop. The core of the checksum computation is the checksum loop
shown in Figure 4. The checksum loop is composed by two nested loops. The
innermost loop traverses the memory and updates the checksum according to
the content of the memory, invoking a different gadget at each iteration. The
memory is not traversed linearly, but instead in a pseudorandom fashion (line
4), using a T-function [11]. The T-function produces a pseudorandom permu-
tation of all the memory locations to traverse. More precisely, the T-function
returns the memory offset of the next memory location for the checksum com-
putation. At each iteration (line 5), from the offset returned by the T-function,
the checksum loop computes the absolute address of the memory location to pro-
cess, and invokes a specific gadget to update the running value of the checksum
(GADGETS represents the number of gadgets available). Clearly, without an anal-
ysis of the code, the attacker cannot predict which gadgets will process which
memory locations and, even if the checksum function were weak (e.g., it suffers
a high collision rate), the attacker would not have enough time to exploit the
weakness. Finally, it should be noted that the execution of the checksum loop is
deterministic, unless it is tampered.

The outermost loop repeats the memory traversal multiple times (ITERATIONS
denote the number of iterations of the outermost loop). At each iteration, the
T-function used in the innermost loop is initialized with a different seed (line 2).
Therefore, the innermost loop is executed multiple times and at each execution
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1 // Disable maskable interrupts
2 asm("cli");
3 // Decrypt the remaining of the page
4 for (i = PROLOGUE_SIZE; i < 4096; i++)
5 BASE[i] ^= KEY[i % KEY_SIZE]
6 // Install custom interrupt handlers
7 asm("lidt %0" : : "m" (IDT));

Fig. 3. Overview of the prologue

1 for (i = 0, j = 0; i < ITERATIONS; i++) {
2 x = seed(i) % (SIZE / 4);
3 do {
4 x = (x + (x*x | 5)) % (SIZE / 4);
5 checksum_gadget[j++ % GADGETS](BASE + x*4);
6 } while (x != seed(i) % (SIZE / 4));
7 }

Fig. 4. Overview of the checksum loop
(in C for clarity)

the running value of the checksum is updated using a different combination of
memory locations and gadgets, and the order in which the checksum is updated
is also different. Since the checksum function is constructed such that any at-
tacker’s attempt to forge the correct checksum will introduce an overhead in
the computation of the checksum, the outermost loop causes a constant time
overhead per iteration and facilitates the detection of the attack. Details about
how we select the optimal number of iterations for the outermost loop are given
in Section 5.

The seeds used by the T-function to generate the addresses are also included
in the memory page containing the checksum function. To avoid wasting precious
bytes of the page, the vector containing the seeds is positioned at a random lo-
cation within the page and is not initialized, to overlap with the existing content
of the page.

Checksum gadgets. The checksum is computed by executing a sequence of
gadgets, each of which contributes to update the running value of the checksum
in a different way. Certain gadgets also perform additional operations to attest
the trustworthiness of the execution environment. Given that gadgets are very
small in size and that an entire memory page is dedicated to the checksum
function, the checksum function can rely on about a hundred different gadgets
simultaneously. Gadgets are generated on demand by the verifier and change (in
number, position, syntax, and semantics) from challenge to challenge.

The following paragraphs describe in details the gadgets used in the checksum
function to attest the integrity of the TPEB and of the code of the executable.
Figure 5 shows some sample gadgets. For clarity, the gadgets presented are not
optimized and use symbolic names (in uppercase) to refer to absolute memory
locations containing data: CHKSUM and ADDR refer respectively to the memory
locations storing the 128-bit checksum and the address of the next word to
process.

Plain checksum computation. The simplest and most frequently used gadget
is responsible only for updating the running value of the checksum. Different
gadgets update the checksum in different ways, by applying different arithmetical
or logical operations and by modifying different bits of the checksum value.
Figure 5(a) shows a sample gadget. The gadget updates the checksum by adding
the result of a bitwise XOR between the current memory location (ADDR) and a
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1 mov ADDR , %eax
2 mov (%eax), %eax
3 xor $0xa23bd430 , %eax
4 add %eax , CHKSUM +4

1 mov ADDR , %eax
2 mov (%eax), %eax
3 add %eax , CHKSUM +8
4 sidt IDTR
5 mov IDTR+2, %eax
6 xor $0x6127f1 , %eax
7 add %eax , CHKSUM +8

1 mov ADDR , %eax
2 mov (%eax), %eax
3 xor $0x1231d22 , %eax
4 mov %eax , %dr3
5 mov %dr3 , %ebx
6 add %ebx , CHKSUM

1 mov ADDR , %eax
2 mov (%eax), %eax
3 lea l_smc , %ebx
4 roll $0x2 , 0x1(%ebx)
5 l smc :
6 xor $0xdeadbeef , %eax
7 add %eax , CHKSUM +4

1 mov ADDR , %eax
2 mov (%eax), %ebx
3 and $0xfffff000 , %eax
4 add $0x2b8 , %eax
5 movb (%eax), %cl
6 movb $0xc3 , (%eax)
7 call %eax
8 movb %cl, (%eax)
9 xor $0x7b2a63ef , %ebx

10 sub %ebx , CHKSUM +8

1 mov ADDR , %eax
2 mov (%eax), %ebx
3 vmlaunch
4 xor $0x7b2a63ef , %ebx
5 sub %ebx , CHKSUM +8

(a) (b) (c)

(d) (e) (f)

Fig. 5. Sample gadgets for (a) plain checksum computation, (b) IDT attestation, (c)
system mode attestation, (d,e) instruction and data pointers attestation, and (f) hy-
pervisor detection.

random key (0xa23bd430). Note that this gadget modifies the second word of
the running 128-bit checksum (CHKSUM+4, at line 4).

IDT attestation. During the prologue, the interrupt descriptor table is replaced
with a custom table, which is provided along with the checksum function. Since
the prologue is executed at the beginning of the checksum function, it is reason-
able to expect the attacker to try to emulate or intercept its execution.

The content of the IDT is implicitly attested by the normal checksum com-
putation, but the address of the IDT is not. To attest that the IDT shipped
with the checksum function is actually being used, the checksum function relies
on a specific gadget that queries the CPU to obtain the address of the IDT and
updates the checksum accordingly. Obviously, the checksum will be wrong if a
different IDT is being used. The only opportunity for the attacker to force the
checksum function to behave as if the requested IDT were successfully installed
is to intercept the query and to manipulate its output. To query the address of
the IDT, the gadget uses the sidt instruction. Unfortunately for the attacker,
this instruction is not privileged: it does not trigger an exception when executed
in user mode [12]. Consequently, the only solution for the attacker to detect the
instruction is to analyze the checksum function or to emulate its execution. How-
ever, any analysis or emulation attempt will introduce a noticeable overhead in
the computation of the checksum. Figure 5(b) shows a sample gadget to attest
the IDT. The only difference with a plain gadget (Figure 5(a)) is the addition
of the instructions to query the address of the IDT (lines 4 and 5).

System mode attestation. After the update of the IDT, the attacker cannot regain
the control of the execution, because all interrupts and exceptions will be served
by the handlers installed by the checksum function. Although the previously
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described gadget forces the attacker to install our IDT, he could still attempt
to execute the entire checksum function in user mode. If no maskable interrupt
occurred during the execution of the checksum function, the checksum would
not get corrupted, and the attack would not be detected. However, even if we
suppose that the attacker executed the checksum function in user mode and that
he were able to reprogram the interrupt controller to prevent any interrupt, he
would lose any opportunity to regain the control of the system after checksum
computation.

To have the guarantee that the TPEB is operating in system mode, the
checksum function relies on a specific class of gadgets. These gadgets use a priv-
ileged instruction to update the running value of the checksum. If the function
is executed in system mode, all the instructions of the gadgets will be executed
successfully. However, if the function is executed in user mode, the privileged
instruction will raise an exception (because of the lack of privileges), and the ex-
ception handler we installed to handle the exception will corrupt the checksum.
In some cases, the handler could also trigger an endless loop. An example of such
a gadget is shown in Figure 5(c). The gadget uses the CPU register dr3 to store
an intermediate result during the computation of the new checksum value. This
register can be accessed only in system mode and any access originating from
user mode causes a general protection fault exception.

Instruction and data pointers attestation. The checksum function is a self-
checksumming function. A common class of attacks against self-checksumming
functions are memory copy attacks, that allow attackers to forge checksums [6].
Briefly, in a memory copy attack, the attacker modifies the instructions of the
checksum function, or the execution environment, to redirect all memory reads
to memory locations containing a pristine copy of the data to attest. A memory
copy attack can be performed in different ways: (i) by patching the instructions
of the checksum function to read from different locations, (ii) by configuring
segmentation to separate the code from the data segment, and (iii) by desyn-
chronizing the data and the instruction TLBs [9].

To prevent memory copy attacks, the checksum function uses a specific type
of gadget that guarantees that reads, writes, and fetches involving the same
virtual memory location refer to the same physical location. Indeed, data and
instruction physical pointers equivalence is sufficient to guarantee that no mem-
ory copy attacks of type (ii) and (iii) can be performed. We intentionally do not
consider the case of memory copy attacks of type (i), performed by patching or
by emulating the checksum function, because of the noticeable time overhead
the attacker would suffer. To validate the equivalence of data and instruction
pointers we leverage a gadget based on self-modifying code [13]. The gadget
updates the running value of the checksum by performing an operation that
is generated dynamically by modifying the code of the checksum function in
place. If no memory copy attack is being performed, the data pointer (used for
both reads and writes) and the instruction pointer point to the same physical
page. Thus, the memory write executed by the gadget to update its instruc-
tion modifies the physical page that is also being executed. If the attacker were
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performing a memory copy attack, the data and the instruction pointer would
point to two different physical pages and the instruction executed to update the
checksum would differ from the ones just created by the gadget. Consequently,
the out-of-date instruction would corrupt the checksum.

Figure 5(d) shows a sample gadget used by Conqueror to prevent memory
copy attacks. The gadget updates the checksum by adding the data read from
the memory (lines 1, 2, and 7). Before the addition, the word read is XORed with
an immediate (line 6). The immediate is rotated (by two bits) at each execution
of the gadget, by modifying the operand of the instruction in place (line 3 and
4). In the case of a memory copy attack the checksum would not be updated
correctly because the operand of the xor instruction would remain unmodified.

Note that, in the case of a memory copy attack of type (iii), the attacker
can operate on each page separately. The aforementioned gadget successfully
protects against the desynchronization of data and instruction pointers that
point to the page containing the checksum function, but, as is, it is ineffective
at protecting other pages (containing the send function and the executable).
Indeed, only instructions residing in the page containing the checksum function
are executed during the checksum computation. To address this problem, we use
a variation of the original gadget, that places a temporary small snippet of code
(e.g., a ret instruction) in a random position of the input page, executes the
snippet, and restores the original content of the modified locations. Figure 5(e)
shows an example of this type of gadget. The gadget selects a random location in
the page being attested (lines 1 to 4), saves the content of the location (line 5),
replaces the content with a ret instruction (line 6), executes the newly generated
instruction (line 7), restores the original content of the modified location (line
8), and finally updates the checksum (line 9 and 10).

Hypervisor detection. An attacker operating in hypervisor mode, on a system
with hardware support for virtualization, has complete control of the operat-
ing system: he can intercept the execution of all sensitive instructions, inter-
rupts, exceptions, and, most importantly, the hypervisor and the attacker are
completely transparent to guests. Dai Zovi and Rutkowska et al. have clearly
demonstrated what an attacker can do on systems with hardware support for
virtualization [14,15]. The gadgets presented so far are effective at attesting the
trustworthiness of the execution environment only if we can guarantee that no
attacker can operate in hypervisor mode. Therefore, the checksum function that
attests the existence of a tamper-proof execution environment on the untrusted
system must be adapted to compute the correct checksum value, in the expected
amount of time, only when no hypervisor is running on the system.

There is a rich ongoing debate among researchers about hypervisors detection
and hiding. Although, the hardware has been specifically designed to masquer-
ade the existence of a piece of code running in hypervisor mode, everybody
has become aware that constructing a completely transparent hypervisor is fun-
damentally infeasible and impractical from a computational and engineering
prospective [16]. Indeed, hypervisors introduce several discrepancies, especially
in terms of resources and timings. Our goal is to exploit these discrepancies, in
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particular timing discrepancies, to detect when the execution environment could
not guarantee untampered execution. The main advantage we have over attack-
ers is that checksum validation is performed by an external party, the verifier,
that has a real perception of time. We exploit this advantage by including in the
checksum function special gadgets that execute instructions that unconditionally
trap to the hypervisor. Similarly to exceptions, hypervisor traps cause the CPU
to spend several cycles to transition from system (or user) mode to hypervisor
mode, to execute the handler of the hypervisor, and to transition back to system
mode. By periodically executing such instructions, we cause a noticeable time
overhead when a hypervisor is running on the untrusted system.

Figure 5(f) shows a sample gadget we use to detect hypervisors. The gadget
reads a word from the memory (line 1), executes a vmlaunch instruction (line
3), and then updates the checksum (line 4 and 5). Other instructions, such as
cpuid, vmread, and vmcall, can be used for this purpose. The vmlaunch in-
struction is available only on CPUs with hardware support for virtualization.
Furthermore, the instruction can be executed only when virtualization support
has been enabled. If a hypervisor is running on the untrusted system, any at-
tempt to execute the instruction results in a trap to the hypervisor. In any other
situation the CPU refuses to execute the instruction and generates an illegal
operation exception. Recall that, by installing a custom IDT, we register han-
dlers for all exception and that these handlers modify the running value of the
checksum. In particular, the handler for illegal instruction exception we install
additionally updates the address of the faulty instruction for resuming the nor-
mal execution of the checksum function from the next one. That is necessary
to prevent an endless loop. To do not interfere with the correct checksum com-
putation, after the trap, the attacker has to reproduce the situation that would
occur on a system without hypervisor: he has to inject an illegal instruction
exception into the guest to trigger the handler registered during the prologue.
If the attacker mimics exactly the behavior of the CPU in the absence of the
hypervisor, the checksum is computed correctly. However, the cost of the trap,
of the execution of the logic to handle the trap, of the event injection, and of
the exception handling we have on a system controlled by an attacker operating
in hypervisor mode is much higher than the cost of the mere exception handling
that we would have on a system without hypervisor. In conclusion, the gadget
takes much longer to execute in an insecure execution environment. By executing
this type of gadgets multiple times during the checksum loop we have the guar-
antee that, if the checksum computation produces the correct return value and
it does not exceed the expected computation time, the execution environment is
tamper-proof.

It is worth noting that if the attacker attempted to execute the checksum
function directly in hypervisor mode, he would never be able to regain the control
of the execution (this is the same case of an attacker that executes the checksum
function in system mode without any hypervisor).
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4.3 Obfuscation

After generation, the checksum function is obfuscated using simple obfuscation
techniques [17]. Particular efforts are devoted to obfuscate the checksum loop
because, by analyzing the loop, the attacker could identify the position of the
various gadgets. The strategy we adopt is to introduce specific gadgets for obfus-
cating the logic of checksum computation. More precisely, these gadgets replace
some of the existing gadgets and interrupt handlers with new ones. Further-
more, we obfuscate gadgets singularly by introducing dead code, overlapping
instructions, and non-trivial pointers computations.

The gadgets we used for normal checksum computation give, as a side effect,
an extra advantage for the verifier over the attacker. The presence of aggressive
self-modifying code prevents the attacker from using efficient code emulations
techniques, such as dynamic binary translation and software-based virtualiza-
tion. Indeed, self-modifying code invalidates cached translated code, and forces
the emulator to analyze and translate the code again and again. We have experi-
enced directly this problem during the development of Conqueror: self-modifying
code executed in system mode caused our development system, based on Virtu-
alBox [18], to trash.

5 Evaluation

5.1 Prototype

We implemented a prototype of Conqueror to evaluate the effectiveness of our
proposed solution. The prototype is specific for untrusted 32-bit systems running
Microsoft Windows XP, and it consists in a hybrid user/kernel space component,
implementing the verifier protocol, and a device driver that stays resident on the
untrusted system.

When the verifier wants to bootstrap a tamper-proof execution environment
on the untrusted system, it generates a new checksum function and encrypts
it. Checksum functions are generated by leveraging a code generation module,
currently written in Python. The verifier uses a kernel component to precisely
measure packets transmission and arrival times. The kernel component running
on the untrusted system passively waits for challenges. When challenged, it fills
the TPEB with the encrypted checksum function; when the key is received, the
attestation begins. To minimize network latency, both parties intercept challenge
requests and responses through a hook installed in the network driver.

To experiment the feasibility of attacks based on hardware-assisted virtual-
ization and their cost we also implemented a minimalistic hypervisor, inspired
by the Blue Pill hypervisor [15], that simply resumes normal execution after
traps. Obviously, any meaningful hypervisor must be much more sophisticated
than this.

5.2 Experimental setup

For our experiments we employed three laptops with the following characteris-
tics: Intel Core2 Duo 2.1GHz, with 4GB RAM, and a Broadcom BCM5906M
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network card, connected on the same 100Mbps local network. The first laptop
was used as a verifier, the second one as the untrusted system, and the third
one as a trusted system. Since our current implementation does not support
SMP, on the laptops we used as trusted and untrusted systems we disabled the
secondary core of the CPU. In our experiments, the total size of the TPEB and
the executable was fixed to six 4Kb pages.

5.3 Estimating the parameters of the challenge

To estimate the various parameters involved in the attestation scheme, we con-
sidered two attack scenarios: a dynamic hypervisor-based attack, and a static
attack aiming to reverse engineer the checksum function.

To understand how the various parameters of the challenge influenced the
overall time to compute the checksum and to understand the opportunities of
the attackers, we generated multiple checksum functions, varying the number
and type of gadgets and the number of iterations of the checksum loop. After
several experiments we decided to fix a minimum for the number of gadgets
for “hypervisor detection”. In each of the checksum functions we subsequently
generated, at least 5% of the total of gadgets performed hypervisor detection.

To estimate the maximum checksum computation time and the network
round-trip time (RTT), the verifier relies on a third-party trusted system, with
the same hardware characteristics of the untrusted system. It is worth noting
that checksum functions can be generated ahead of time and their execution time
can be precomputed. Indeed, the running time depends only on the checksum
function, on the CPU, and on the amount of data to attest. Given multiple mea-
surements of the checksum computation time, we estimate the maximum compu-
tation time using Chebyshev’s inequality, that states that for a random variable
X, with mean value µ and standard deviation σ, Pr(µ−σ ≤ X ≤ µ+σ) ≥ 1− 1

λ2 ,
where λ ∈ R. In our context, X is the computation time, including the net-
work RTT1. Therefore, the upper bound on checksum computation time is
∆t = µ + λσ, with confidence 1

λ2 . Similarly, the minimum checksum computa-
tion time of the most powerful attacker (i.e., an attacker operating in hypervisor
mode) is µ − λσ; in the calculation of the minimum computation time of the
attacker we assumed the adversary to have a null network overhead.

The number of iterations of the checksum loop must be selected to force
the time overhead suffered by the attacker to skyrocket. On the other hand, an
excessive number of iterations would increase attacker’s opportunities to reverse
engineer the checksum function. The challenge is to find the best balance between
the two. The approach we used was to generate multiple checksum functions, and
to compare the time to compute the checksum in the trusted environment and
in the environment controlled by the most powerful attacker. Figure 6 depicts
the time overhead suffered by the attacker during our simulations, performed
using five different checksum functions. More precisely, the figure shows the
difference between the time to compute the checksum on the simulated untrusted
1 Clearly attestation requires RTT to be minimal. The verifier can measure the RTT

and wait to start the challenge if the RTT is too high.
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Fig. 6. Time overhead in a hypervisor-based attack

system and on the trusted one. The simulation confirmed our hypothesis: the
time overhead suffered by the attacker increases with the number of iterations of
the checksum loop. According to our simulation two iterations are sufficient to
detect an attack in our experimental scenario (attestation of six memory pages).
However, to prevent false negatives, we doubled the number of iterations. Note
that the number of iterations to detect a forgery is inversely proportional to the
amount of memory to attest; thus, the number of iterations performed by the
checksum loop can be tuned accordingly.

5.4 Experimental results

Using the approaches described in the previous paragraphs we generated multi-
ple challenges and used them to verify the effectiveness of Conqueror at detecting
authentic checksum computations from forgeries. For clarity we refer to ∆t, the
upper bound of the checksum computation time estimated using Chebyshev’s in-
equality, as the attacker detection threshold. In our experiments we chose λ = 11
to obtain an attacker detection rate with 99% confidence. For each challenge we
estimated the attacker detection rate by challenging multiple times the trusted
host. Subsequently we challenged the untrusted system twice: once the untrusted
host simulated a genuine system (i.e., with no attacker), and once the host sim-
ulated the presence of the most powerful dynamic attacker (i.e., an attacker
attempting to forge the checksum using a hypervisor-based attack). In all the
challenges the untrusted system computed the correct checksum without ex-
ceeding the attacker detection rate. Similarly, in all the challenges the untrusted
system under the control of the attacker did not compute the correct checksum
in time to be considered authentic.

Figure 7 shows the details of one of the challenge we used during the exper-
iment. The figure compares the time the untrusted system took to compute the
checksum in the two aforementioned scenarios (the same challenge was repeated
more than 50 times). Moreover, the figure shows the attacker detection thresh-
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old (∆t), and the lower bound for the most powerful attacker (µhvm − 11σhvm).
For the challenges in the figure, the average network RTT was less than 0.32ms,
and the attacker detection rate was 112.44ms. Similarly, the lower bound for
the computation of forged checksum was 115.56ms. The four ms difference and
the very small variance between the two clearly indicate that false negatives
are practically impossible. The data in the figure confirms the claim: no check-
sum was forged in time to be considered valid and no authentic checksum was
considered forged.

The figure also compares the time requested to compute genuine checksums
with the time the attacker would require to perform a preliminary static analy-
sis (i.e., a recursive disassembly) of the checksum function. To measure to cost
of the analysis, we loaded in Ida Pro [19], a widely used and well recognized
disassembler, the checksum function and then measured the analysis time. Note
that the checksum analyzed through Ida Pro was generated without employing
any obfuscation technique because the disassembler would not have been able
to analyze the code otherwise. The preliminary analysis took about 105ms, just
four ms less than the attacker detection rate. Considering that disassembly is
fundamental for any static analysis, and that any meaningful analysis to recon-
struct the semantic of the checksum function costs much more, it is practically
impossible for an attacker to forge a checksum without being detected.

5.5 A real application of Conqueror

Conqueror has been developed to build security applications that must be in-
stalled and executed on an untrusted system. All the aforementioned experi-
ments were performed using dummy executables. Nevertheless, to demonstrate
the versatility of Conqueror we have developed a special application intended
to be run in the tamper-proof execution environment established by Conqueror.
The application was a loader for a hypervisor. The goal was use this loader to
install a measured hypervisor on an untrusted system [1], on-the-fly, and to seg-
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regate the untrusted system in a guest virtual machine. We successfully installed
the hypervisor on our test untrusted system and then resumed the normal, but
controlled, execution of the system. In conclusion, Conqueror represents a pure
software alternative to the senter and skinit operations available in the In-
tel LaGrande [1] and AMD Pacifica [8] technologies for hypervisors secure late
launch.

6 Discussion

Conqueror conservatively assumes that if a hypervisor is installed on the system,
the hypervisor is malicious. It would be worthless to use Conqueror in a system
that runs as a guest of a benign hypervisor: the dynamic root of trust could be
established directly by the hypervisor.

The major limitation of Conqueror is the impossibility to bootstrap a tamper-
proof environment on SMP and SMT systems. Most modern systems support
symmetric flow of executions. An attacker could use the secondary computa-
tional resources to forge checksums or to regain control of the execution after
attestation. Although we have not addressed the problem in detail, we would
like to sketch a possible solution. The verifier can challenge the untrusted SMP
(or SMT) system with multiple challenges simultaneously. More precisely, each
processor is given a different checksum function to execute. To solve the chal-
lenge, the untrusted system has to compute all the checksums and send them
back to the verifier, within the given time frame. Thus, the attacker is left with
no spare computational resource to use.

7 Related work

The majority of the research work on software-based attestation and verifiable
code execution is specific for embedded devices and sensor networks. Most of the
schemes are based on the same type of challenge and response protocol [3–6];
they have been thoroughly presented in Section 2. The strength and weaknesses
of these schemes have been studied by Castelluccia et al. [20]. The approach used
in Conqueror is instead inspired by the work done Shaneck et al. and by Garay
et al. [2,7]. However, the two attestation schemes are also specific for embedded
devices and not suited at all for attestation on legacy systems, the target of
our work. Genuinity and Pioneer are two schemes, for environment attestation
and verifiable code execution respectively, specific for legacy systems [6, 21].
Unfortunately, both schemes are vulnerable to attacks. The vulnerabilities of
the former have been studied by Shankar et al. [22]. The vulnerabilities of the
latter have been introduced in Section 2.

The alternative approach to software-based attestation is hardware-based at-
testation. The research community spent a lot of efforts in developing hardware
technology equipped with special trusted components to make hardware-based
attestation practical. Examples of hardware technology with such capabilities
are Cerium [23], BIND [24], Intel LaGrande Technology [1], and AMD Pacifica
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Technology [8]. In particular, thanks to the efforts of the Trusted Computing
Group and the standardization of the TPM chip [25], Intel LaGrande and AMD
Pacifica technologies are slowly becoming mainstream. They have been used
as ground to develop various hardware-based attestation schemes. Examples of
these schemes are the IBM Integrity measurements Architecture [26], the Open
Source Loader [27], Terra [28], and Flicker [29]. Similarly to Conqueror and Pi-
oneer, Flicker’s goal is to achieve tamper-proof execution of code on untrusted
systems. However, while Conqueror and Pioneer are entirely software-based so-
lutions, Flicker leverages the TPM, available on modern commodity hardware,
to accomplish the same goal. In particular Flicker relies on a feature introduced
in the CPU that allows the secure late launch of virtual machine monitors.

8 Conclusions

We presented Conqueror, a software-based code attestation scheme for tamper-
proof code execution on untrusted legacy systems. Conqueror allows to exe-
cute an arbitrary piece of code with the guarantee that it is run untampered,
even when no specific hardware for trusted computing is available. We devel-
oped an experimental prototype of Conqueror, to evaluate its resilience against
hypervisor-based attacks, the most powerful type of dynamic attack, and against
attacks based on static analysis of the code. By leveraging Conqueror, we also
developed a proof-of-concept pure software-based primitive to launch securely a
hypervisor in a running untrusted system.
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