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Abstract Malware detectors are applications that attempt to identify
and block malicious programs. Unfortunately, malware detectors might
not always be able to preemptively block a malicious program from in-
fecting the system (e.g., when the signatures database is not promptly
updated). In these situations, the only way to eradicate the infection
without having to reinstall the entire system is to rely on the remedia-
tion capabilities of the detectors. Therefore, it is essential to evaluate the
efficacy and accuracy of anti-malware software in such situations. This
paper presents a testing methodology to assess the quality (complete-
ness) of the remediation procedures used by malware detectors to revert
the effect of an infection from a compromised system. To evaluate the
efficacy of our testing methodology, we developed a prototype and used
it to test six of the top-rated commercial malware detectors currently
available on the market. The results of our evaluation witness that in
many situations the tested malware detectors fail to completely remove
the effects of an infection.
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1 Introduction

One of the biggest problems the Internet community has to face today is the
widespread diffusion of malware, malicious programs written with the explicit
intent to damage users and to use compromised systems for various types of
frauds. The second half of 2007 witnessed a drastic increase (about 135%) of
the number of threats related to malware [1]. This can be ascribed to a num-
ber of different root causes, but the main reason is probably the easy financial
gain malware authors obtain by selling their creations in the underground mar-
ket [2]. Besides the rapid spread of malware, we are observing a parallel advance
in the techniques for protecting end-users against malicious code. In order to
face the growing complexity in the techniques employed by malware writers
to evade detection, traditional signature-based anti-malware solutions are now
being supported by behavioural, semantics-aware, approaches [3,4], that main-
stream commercial products are starting to include [5,6,7].

To defend against malicious programs, users typically rely on malware de-
tectors, which try to detect and prevent threats before the system is damaged.



Unfortunately, in many cases detection and prevention are not possible. Imagine
for example a user that is not running a malware detector or a user that is run-
ning a malware detector but who gets infected before the appropriate detection
signature is released. In such a situation, post-infection remediation remains the
only solution to get rid of a malware and of the damages it may have caused to
the system, other than reinstalling the entire system. However, the experience
has taught us that sometimes automatic remediation procedures could cause
more problems than they would solve [8,9].

As any kind of software application, malware detectors require thorough test-
ing. Users do not only need a stable application, but also a product capable of
detecting threats with low false-negative and false-positive rates, and capable of
remediating their system from a damage caused by a malicious program that
was not detected in time. For these reasons, the testing and the evaluation of
a malware detector require particular attentions, to the point that the leading
industries and researchers in the field have recently defined common guidelines
to test this particular class of software [10]. Although these guidelines describe
what should be evaluated, they do not describe any precise methodology to do
that.

In this paper we address the problem of evaluating the remediation capabili-
ties of a malware detector and we propose a fully automated testing methodology
to evaluate this characteristic. The proposed methodology is dynamic. We run
a malicious program in a victim system and we monitor the execution to detect
what modifications are made to the environment. Subsequently, we trigger the
remediation procedure of the tested malware detector to clean up the victim
system. Finally, we analyse the state of the environment to verify which of the
modifications previously caused by the malicious program have been successfully
reverted. We have implemented the proposed methodology in a prototype and
evaluated six of the most rated malware detectors on the marked. Our evaluation
testifies the effectiveness of our tests and shows that the remediation procedures
of the tested detectors suffers incompleteness. For example, we have empirically
observed that only about 80% of the untrusted executables dropped by malicious
programs on infected systems are properly removed by malware detectors.

To summarise, the paper makes the following contributions:

– a fully automated testing methodology to evaluate the completeness of re-
mediation procedures in commercial malware detectors;

– a prototype implementation of our testing methodology;
– an empirical evaluation of six malware detectors currently available on the

market, with about 100 malware samples each.

The paper is organised as follows. Section 2 motivates the importance of
complete post-infection remediation. Section 3 presents the requirements of the
ideal remediation procedure and sketches an overview of our testing methodol-
ogy. Section 4 discusses the implementation of the infrastructure we have devel-
oped. Section 5 discusses the results of our experimental evaluation. Section 6
presents the related work. Finally, Section 7 concludes the paper.



WriteFile("c:\windows\poq.exe", "malicious code")

CreateProcess("c:\windows\poq.exe")

QueryKeyValue("\HKLM\...\CurrentVersion\Run", "v") → ""

CreateKeyValue("\HKLM\...\CurrentVersion\Run", "v", "c:\windows\poq.exe")

ReadFile("c:\...\drivers\etc\hosts") → "Copyri... 127.0.0.1 localhost"

WriteFile("c:\...\drivers\etc\hosts", "67.23.124.83 www.google.com\n

67.23.124.85 www.citi.com\n")

DeleteFile("c:\malware.exe")

Figure 1. High-level execution trace of a sample malicious program (malware.exe)

2 The importance of remediation

To comprehend why remediation is a key issue in defeating malware, let us
consider a sample malicious program. Figure 1 shows a fragment of an execu-
tion trace of the sample malware, reporting the most important modifications
to the system performed by the application. The malicious program replicates
itself into a new executable (c:\windows\poq.exe), creates a registry key to
configure the system to start the new executable automatically at boot, and
tampers the configuration of the resolver (writing into c:\windows\system32\
drivers\etc\hosts) to hijack network traffic, directed to www.google.com and
www.citi.com, to a malicious web site. Moreover, let us imagine a user whose
system gets infected by this malware and that, at the time of infection, his sys-
tem was not properly protected (e.g., the infection took place before a signature
for detecting the malware was released). Only after a while, when the appropri-
ate signature becomes available, the malware detector can detect the presence
of the malware on the system and can remediate the damages.

What the user expects from the detector is that it is able to remediate com-
pletely the system. That is, the malware detector has to revert all the modifi-
cations made to the system by the malicious program. In the case of the exam-
ple, that means that the original malicious executable (malware.exe), the exe-
cutable created (c:\windows\poq.exe), and the registry key (\HKLM\Software
\Microsoft\Windows\CurrentVersion\Run\v) have to be removed from the
system. Similarly the process started has to be killed, and the malicious en-
tries added to the configuration of the resolver removed (c:\windows\system32
\drivers\etc\hosts).

If the remediation procedure is not complete, the system can be left in an un-
safe state. Imagine for example that the malware detector reverts all the actions
performed by the malicious program, but that it is not able to restore the proper
configuration of the resolver (i.e., to remove the malicious entries added to the
file c:\windows\system32\drivers\etc\hosts). Even though all the malicious
executables dropped by the malware are removed from the system, the security
of the user is still compromised because part of the network traffic is hijacked to
a malicious web site. This site can be used to steal sensitive information or to
deliver new malware to the user.



System call trace (S) High-level behaviour (T )

NtCreateFile("...\poq.exe") → f
NtWriteFile(f, "malicious code")
NtWriteFile(f, "other malicious code")
NtClose(f)

WriteFile("...\poq.exe", "malicious ...")

. . .
NtOpenFile("...\poq.exe") → f
NtCreateSection(...) → s
NtMapViewOfSection(h, s)
NtCreateProcess(h) → p
NtCreateThread(p) → t

CreateProcess("...\poq.exe")

. . .

NtOpenKey("...\Run") → r
NtQueryValueKey(r, "v") → FAILURE
NtSetValueKey(r, "v", "...\poq.exe")
NtClose(r)

CreateKeyValue("...\Run", "v", "...\poq.exe")

. . .
NtOpenFile("...\etc\hosts") → f
NtReadFile(f, 1024) → "Cop..."
NtWriteFile(f, "67... www.google...")
NtWriteFile(f, "67... www.citi...")
NtClose(f)

WriteFile("...\hosts", "67... www.citi.com\n")

. . .
NtDeleteFile("c:\malware.exe") DeleteFile("c:\malware.exe")

Figure 2. System call trace of our sample malicious program (malware.exe) and cor-
responding high-level execution trace.

3 Testing methodology

This section defines the ideal remediation procedure (Section 3.1) and presents
the testing methodology we have developed to verify whether the remediation
procedures available in a malware detector resemble the ideal one or not (Sec-
tion 3.2).

3.1 The ideal remediation procedure

For the purpose of defining the ideal remediation procedure, we can think the
execution of a malicious program as characterised only by interactions with the
environment, where each interaction corresponds to the invocation of a particular
OS routine (or system call). Let S = 〈s0, s1, . . . , sn〉 be the execution trace of
our malware sample. The system calls in S can be classified in two classes: those
that modify the state of the environment and those that do not. For example,
to replicate itself into a system folder, a malicious program has to create a file
and to copy its code into the file. Similarly, to install itself at boot, the program
has to create a particular registry key. Both activities involve a modification
of the state of the environment. On the other hand, a program that reads and
parses the content of a file does not alter the state of the environment. For our
purpose, it is sufficient to consider only a subset of all the system calls executed
by the malicious program, including only the ones that modify the state of the
local environment: S ′ = 〈sj ∈ S : sj contributes to modify the state of the local
system〉.



To achieve a particular high-level goal, the malicious program has to execute
multiple system calls. As an example, to replicate itself, the program has to cre-
ate a file and then to write its payload into the file (typically in multiple passes).
Nevertheless, for remediating a system from a malware infection, it is not im-
portant to know which system calls the malicious program executed to modify
the system, but instead what modifications were made to the local system by
the program. For this reason, we can abstract the sequence of system calls S ′
executed by the malicious program to infect the system through a set of high-
level system state transitions T . Each transition t ∈ T represents the effect on
the local system produced by the execution of a sequence of related system calls.
Let us consider again our sample malicious behaviour of Figure 1 and the corre-
sponding system calls trace shown in Figure 2, where each high-level behaviour
is associated with the sequence of system calls executed by the malware and that
produces a particular state transition. In the figure, irrelevant system calls (i.e.,
the system calls that do not modify the state of the system) are reported in gray.
As an example, to create a file on the file system (which consists in a copy of
the malicious program) the following system calls are executed: NtCreateFile,
NtWriteFile, and NtClose. The high-level state transition associated with this
sequence of system calls is the creation of a new file on the system.

The set of high-level system state transitions T can be divided in multiple
classes, each of which represents a state transition involving a particular class
of OS resource. For example, for a Microsoft Windows system we have T =
F ∪ R ∪ P ∪ S where: F represents the state transitions involving files, R the
state transitions involving registry keys, P those involving processes, and S those
involving system services. This separation is important because each class of state
transition requires a specific mechanisms for remediation. It is worth pointing out
that, in our context, we are interested only in the state transitions that modify
the local system, as no remediation could be accomplished for transitions that
affect remote hosts. Furthermore, we do not consider system state transitions
caused by other benign processes that might be running in the test environment.

A remediation procedure P is complete if it is able to revert all the effects
(i.e., the high-level state transitions) of the execution of the malware: ∀ t ∈ T ,
t is reverted by P. The ideal remediation procedure is the one that is complete.
Reverting a particular state-transition means to bring the state of the system
back to that preceding the transition. Practically speaking, if a malicious pro-
gram creates a file we expect the malware detector to remove the file; if the
malicious program reconfigures the resolver, we expect the malware detector to
adjust the configuration of the resolver.

3.2 Testing the completeness of a remediation procedure

Testing scenarios. The following paragraphs present two real-world scenarios
that resemble the one we use to perform the testing of a malware detector. The
first scenario involves a system protected by a conventional malware detector,
while the second one involves a system protected by a behaviour-based detector.



Scenario 1 – Conventional malware detector. A user’s system gets infected by a
malicious program because the conventional (signature based) malware detector
running on the system is not able to promptly detect and to prevent the infec-
tion (e.g., because the appropriate signature has not been published yet). Only
later, the malware detector detects the presence of the malicious program on the
system and cleans the system to get rid of the threat.

Scenario 2 – Behaviour-based malware detector. A user is running a behaviour-
based malware detector on his system. The system is infected by a malicious
program but the detector does not detect it until any malicious activity is ob-
served. For example, consider malicious program that creates some files on the
system and then tries to infect a running process. As the initial activity is le-
gitimate, the malicious program is blocked only when it tries to infect other
processes (or after the infection has taken place). The malware detector, after
having detected the malicious behaviour, repairs the system to rollback all the
potentially dangerous activities performed before the detection.

Overview of the testing methodology. Our goal is to measure remediation
capabilities of the detector in any of the aforementioned scenarios. To accomplish
this goal, we select a set of sample malware and we use each of these programs to
infect a test system, we let to the detector to remediate the damages caused to
the system by each infection, and finally we check the state of the system to see
if the detector was able to revert the state to that prior to the infection. In other
words, by infecting our test system with a malicious program we identify the set
of system state transitions which are direct consequences of the infection and
then we use these information to measure the completeness of the remediation
procedure.

A generalisation of our testing methodology is outlined in Figure 3 and is
summarised in the following paragraphs.

(P1) – Execute and trace the malicious sample. We select a malicious program
we know in advance is detected by the malware detector under testing, and
we run it in the test system. To simulate the scenario involving a conventional
malware detector it is sufficient to disable the detector temporarily. On the
other hand, to simulate the scenario involving a behaviour-based detector the
malicious program is run with the detector enabled. The execution is stopped
when a timeout is reached or when the behaviour-based malware detector detects
a malicious behaviour. As the execution of the malicious program is monitored
by an external monitor, at the end of the execution we obtain S, the complete
trace of the system calls invoked by the program during the execution.

(P2) – Freeze malicious processes. We freeze the state of the malicious program
to prevent it from further altering the state of the system. Subsequent steps of
the analysis will refer to that state.



(P1) Execute & trace malware
S = 〈s0, s1, . . . , sn〉

(P2) Freeze malicious processes

(P3) Abstract high-level behaviours
S ′ = {s ∈ S : s modifies local system}
T = {t : t abstracts a set of syscalls}

(P4) Discard intangible transitions
T ′ = {t ∈ T : t is still valid}

(P5) Trigger remediation

(P6) Check for reverted transitions
R = {t ∈ T ′ : t has been reverted}

Figure 3. Overview of our testing methodology. In gray we report the outcome of each
phase.

(P3) – Abstract high-level behaviours. We analyse the recorded execution trace S
to extract S ′, by excluding all the system calls that do not alter the state of the
system (e.g., those used to open a file in read-only mode, or to read a registry
key). Then, we analyse the resulting trace to infer the high-level behaviours of
the program and the corresponding set T of high-level system state transitions.

It is worth noting that we analyse only the behaviour of the malicious process,
and its children, and we do not consider high-level state-transitions associated
with other processes running concurrently on the system. Thus, some of the
high-level state transitions we analyse could conflict with those associated with
other processes. To mitigate this problem without increasing the complexity of
the analysis, we trace the malicious program in highly passive environments,
with a minimal number of potentially conflicting processes and with no user
interaction at all.

(P4) – Discard intangible transitions. Not all the observed high-level program
behaviours lead to tangible system state transitions. As an example imagine our
sample malicious programs that deletes the original executable after it has repli-
cated. It is important to preemptively detect intangible state transitions because
otherwise one might think that the transitions is reverted by the remediation
procedure. For this reason, we identify such transitions and filter them out. The
next phases of the testing will target only tangible transitions: T ′ = {t ∈ T : t
is tangible on the test system}.

(P5) – Trigger remediation. Having collected all the information necessary to test
the completeness of the remediation procedure, we can now trigger the malware
detector to remediate the infection and to cleanup the system. In the case of
a conventional detector we have to launch a full-system scan, which includes



the scanning of all files and running processes. In the case of a behaviour-based
detector we have to authorise the detector to quarantine the malicious program;
recall the behaviour-based detector has been active since the beginning of the
execution of the malicious program and it has already blocked the execution of
the program.

(P6) – Check for reverted transitions. Once the malware detector has completed
the remediation, we have to check whether each of the high-level state transitions
t ∈ T ′ has been properly reverted. Practically speaking, that means that we
have to compare the state of the system prior to the infection with the state
after the infection and the remediation, to detect any mismatch that can be
ascribed to the malicious program. It is worth pointing out that we cannot
expect the conventional malware detector to revert state transitions that caused
data loss. On the other hand, it is legitimate to expect that from the behaviour-
based malware detector, as it has observed the whole execution of the malicious
program since the beginning. At the end of this phase, we obtain a set R ⊆ T ′
of abstract transitions that have been reverted by the malware detector. If the
remediation procedure is complete, then R = T ′; instead, if R ⊂ T ′, then every
transition t ∈ T ′\R testifies the incompleteness of the remediation procedure for
the malicious program used for the testing. It is worth noting that R could also
include some state transitions that are not in T . This happens when the malware
detector incorrectly attributes a spurious action to the malicious program [8].
However, as our analysis is driven by the observed behaviours, we do not handle
this situation.

4 Implementation

We have developed a prototype that implements the testing methodology dis-
cussed in the previous section, specific for testing malware detectors for Microsoft
Windows. In this section, we discuss the technical details regarding the imple-
mentation of our testing infrastructure. The methodology described previously
can be used to test the completeness of remediation procedures of both con-
ventional and behaviour-based malware detectors. In the following, we describe
in detail only the implementation specific for the testing of conventional detec-
tors. Nevertheless, the implementation for behaviour-based detectors only differs
in the fact the detector is active when the malicious program is executed and
traced.

Figure 4 depicts our testing infrastructure. The main components of our ar-
chitecture are the victim test system, where the malware sample and the detector
are located, and the analysis environment, where execution traces are analysed.
The malicious sample is uploaded into the test machine and its execution is mon-
itored. Syscall traces are subsequently analysed in the analysis environment, and
further abstracted into high-level state transitions that are then verified. Finally,
the malware detector is allowed to scan the whole system, and then the state of
the system is checked to detect the set of transitions that have been reverted.
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Figure 4. Architecture of the testing infrastructure

4.1 Tracing the malware sample

The malware sample is executed and traced in the test system (steps 1–3 in Fig-
ure 4). For the tracing we relay on our home made system call tracer, codenamed
WUSSTrace [11], a user-space system call tracer for Windows. WUSSTrace parses
the majority of the arguments of system calls, thus allowing a subsequent fine-
grained analysis of the behaviour of the program. Each intercepted system call
is logged into an easy-to-parse XML trace, together with its input and output
arguments. If the monitored process creates other processes or threads, these
are monitored recursively. We are aware that user-space tracing can be easily
circumvented by a nasty malware and that safer solutions exist (e.g., hooking
from kernel space or through virtual machine introspection). However, we made
this decision only to ease the development of our prototype.

We set a timeout on the execution of the malicious program and the other
processes it creates. If a monitored process does not terminate spontaneously
before the timeout expires, we freeze the process, by suspending the execution
of all its threads. By freezing the malicious process instead of terminating it,
we allow the malware detector to operate in a “best-case scenario”, where it
can apply in-memory scanning techniques to analyse the memory image of the
processes and to apply all the available heuristics.

4.2 Analysis of the system call trace

In order to analyse the system calls issued by the monitored malware sample,
we developed a trace analysis tool that off-line performs the abstractions needed
to infer the high-level program behaviours and the corresponding system state
transitions. In our current implementation, we focus on the identification of



the files, registry keys, processes, and system services that have been created
or tampered by the malicious sample or by any of its child processes. For this
reason, starting from a trace S, we obtain (steps 4 and 5 in Figure 4) the set
of system calls that modify the state of the environment (S ′) by including only
those syscalls that lead to the system state transitions of interest: file-system
modifications (e.g., NtCreateFile, NtOpenFile, NtWriteFile), modifications of
registry keys (e.g., NtCreateKey, NtSetValueKey), process creation or infection
(e.g., NtCreateProcess, NtOpenProcess), etc.

To abstract S ′ into high-level behaviours and the corresponding set of state
transitions T , we need to correlate together the system calls that contribute
to the same high-level behaviour (step 6). In order to identify the syscalls re-
sponsible for a particular behaviour (i.e., those that operate on the same re-
source) we employ standard data-flow analysis techniques [12]. The data-flow
analysis is not fine-grained, as we do not log every single machine instruc-
tion executed by the monitored processes. Thus, dependency relationships be-
tween system calls are identified through handles (i.e., Windows resources iden-
tifiers): if system call s2 uses handle h and the system call s1 is the (dy-
namic) reaching definition for h, then we can assume that s1 and s2 operate
on the same resource. As an example, when we find in the execution trace a
NtSetValueKey(r, "v", "...\poq.exe") system call we need to determine
the name of the key that is being written; for this purpose, we compute the
dynamic backward slice for the key handle r and we analyse the arguments
of the system call that originally defined it [13]. Similarly, in order to com-
pute the name of the files that are actually modified by the malware, we cal-
culate the dynamic reaching definition for the file handle f used by the sys-
tem call NtWriteFile(f, "..."); this reaching definition will correspond to a
NtCreateFile or NtOpenFile, and through the analysis of its input arguments
we can infer the name of the file being written.

4.3 Filtering of intangible high-level transitions

Having built the set T of high-level state transitions that represent the modifi-
cation of the system caused by the malicious program, it is important to ensure
that each transition t ∈ T is valid (i.e., it represent an actual modification of
the state of the environment, that is tangible after the malicious program has
terminated or it has been frozen). Indeed, any spurious state transition must
be discarded, as it could negatively affect the accuracy of the evaluation of the
remediation procedure.

As an example consider again our sample malicious program, whose high-
level behaviour is summarised in Figure 1. The program replicates its payload
and then deletes the original executable. When the execution of the program
in the test system terminates (or is frozen) the executable no longer exists on
the system. If we do not test whether the file still exists on the system prior to
the invocation of the malware detector we might erroneously praise the malware
detector for something it has not done. On the other hand we want to be sure that
system state-transition, even if not annihilated by the malicious program itself,



are effectively tangible. The assumption that each write access to a resource of
the system produces a modification of the system state might be too broad. For
example, several malware often overwrite registry keys with the actual content of
the keys; thus, despite the keys are overwritten, the system state does not mutate
(this is probably a side effect caused by the use of some high-level libraries). A
similar situation might occur with memory mapped files, because these files are
written without invoking system calls and thus we have to conservatively assume
that a file mapped with write permission is eventually modified.

We identify intangible state transitions by querying directly the test system
in the exact same way we query it to detect if a transitions has been reverted
by the malware detector (steps 7 and 8). Only tangible transitions T ′ ⊆ T
are targeted by the remaining phases of the testing. We detect registry keys or
files that are effectively modified by comparing their actual content with their
content preceding the infection. To do that we maintain a database of hashes of
the content of all files and registry keys of the test-system before the infection. We
discard all the behaviours that preserve the content of these resources. Similarly
we also discard all the behaviours that involve the creation of files, registry keys,
and processes that cannot be found on the test system at the end of the execution
of the malicious program. Further details about how the test system is queried
are given in the next paragraphs.

4.4 Execution and evaluation of the remediation procedure

At this point it is possible to trigger the malware detector to analyse the system
and clean it from the infection. We invoke it to perform a full-scan of the file
system, of the registry, and of the image of running processes (step 9 in Fig-
ure 4). We also enable all the heuristics supported to improve the detection and
remediation rate. When the detector terminates the analysis of the system, we
verify which of the state transitions associated with the execution of the mali-
cious program have been reverted (step 10 and 11). Recall that the system state
transitions T ′ can be divided in multiple classes according to the type of resource
affected by a transition. That is, T ′ = F ∪ R ∪ P ∪ S, where F , R, P , and S
are the classes of transitions involving respectively files, registry keys, processes,
and system services. Each class of transitions requires a particular procedure to
verify whether the transition has been reverted or not. A transition t ∈ T ′ is
considered to be reverted by the malware detector when one of the following
conditions is satisfied:

– if t ∈ F , the file subject of the transition is deleted or modified by the
malware detector;

– if t ∈ R, the registry key subject of the transition is removed or modified by
the malware detector;

– if t ∈ P , the process spawned by the malicious program is terminated;
– if t ∈ S, the system service created by the malicious program is disabled.

Note that we optimistically assume that any modification made by the remedia-
tion procedure to a resource manipulated by the malicious program successfully
restores the initial state of the resource.



To test the aforementioned conditions, we leverage a small helper program we
run in the test system, that allows us to query the state of a particular resource.
For example, if we have observed the malicious program to create a registry key,
we query the helper to check whether the key still exists on the system and, if
so, to retrieve its contents and perform the appropriate comparisons.

5 Experimental results

This section presents the results of the testing of six of the top-rated commercial
malware detectors. The goal of our experimental evaluation was to prove the
effectiveness of the proposed testing methodology and not to compare the tested
malware detectors to tell which was the best and which was the worst. The
experiments witnessed the effectiveness of our testing methodology. Indeed, they
highlighted that none of the tested malware detector has complete remediation
procedures. Furthermore, the experiments showed that the type and percentage
of system state transitions reverted varies substantially among detectors.

5.1 Experimental setup

We tested the following malware detectors: Avast Professional 4.8, Kasper-
sky Anti-virus 2009, McAfee VirusScan Enterprise 8.5.0, Nod32 Anti-virus 3.0,
Panda Anti-virus 9.0.5 and Sophos Anti-virus 7.6. We selected the malware de-
tectors that facilitated the most the batch analysis, that is, those invokable
directly from the command line and with the ability to cleanup the system au-
tomatically. We assumed that the detection capabilities of the command line
version (with the proper arguments) and the GUI version corresponded. The
virus definitions of each product were last updated on 15 January 2009. To dis-
courage any direct comparison among the malware detectors, they were tested
using different sets of about 100 malware samples, chosen randomly from a cor-
pus composed by several thousand samples collected in the last quarter of 2008.
All the samples tested were detected by the six detectors.

We performed the evaluation of our testing methodology using as test sys-
tems multiple VirtualBox virtual machines, each one running a different malware
detector. To prevent other processes to alter the state of the system resources
affected by the malicious programs used for the testing, we stripped down the
virtual environments used for the analysis: we stopped all unnecessary services
and processes and we did not interact at all with the environments. We traced
the execution of the selected malicious program for five minutes and we per-
formed all the steps of the analysis without restarting the test system. After
each test, we restored the original clean state of the virtual machine.

5.2 Evaluation of state-of-the-art malware detectors

Figure 5 presents the overall results of our experiments. The names of the mal-
ware detectors have been anonymised to discourage comparisons. For each mal-
ware detector, we report the average percentage of system state transitions that
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Figure 5. Average percentage of system state transitions reverted by each malware
detector.

were reverted. The average is computed on the total number of malware used
to test each detector. The transitions are separated in two groups, according to
their security impact on the system: primary and ancillary. Primary transitions
are those that have a high impact on the system, while ancillary transitions have
a minor impact. A user should expect all primary transitions to be reverted by
the malware detector, while he could tolerate if some ancillary transitions were
not reverted. The partitioning of transitions in the two groups has a certain
degree of subjectivity. We divided each of the transitions classes F , R, P , and
S in primary and ancillary as follows:

– F (files): we consider as primary transitions all those that involve executable
files (e.g., .exe, .dll, .bat, .pif, .scr), while as ancillary those involving
the remaining types of files.

– R (registry keys): we consider primary transitions those that involve registry
keys that can be used to start programs automatically and ancillary all the
remaining ones.

– P (processes): we consider primary the transitions that create processes
where the executed files match any of the files dropped on the system by
the malicious program; the remaining processes started by the malware but
executing programs already present on the system are instead considered
ancillary.

– S (services): for simplicity we treat system services as normal processes.

The graph in Figure 5 clearly shows the effectiveness of our testing methodology
at evaluating the completeness of remediation procedures. None of the tested
malware detectors turned out to be complete, even if only primary transitions
are taken into account: about 75% of the total primary transitions and only 4%
of the total ancillary transitions were reverted.
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Figure 6. Average percentage of primary and ancillary state transitions, partitioned
by the system resources involved, reverted by each malware detector.

A more detailed overview of the average distribution of primary and ancillary
system state transitions reverted, for each transition class, is reported in Figure 6
(product names have been anonymised). While all malware detectors reverted
the majority of primary transitions involving files, some of them (e.g., Vendor
C and Vendor F) did not revert transitions involving registry keys at all. Other
detectors instead (e.g., Vendor A and Vendor B) did not seem to terminate
malicious processes, although we did not check the state of the system after a
reboot.

We did not test interactively whether the system continued to work properly
after infection and remediation. Indeed, there could exist situations in which
an incomplete or improper remediation might render the system unusable. For
example, imagine a malicious program that creates a registry key pointing to an
executable, and that the existence of the key mandates the existence of the file
(e.g., in Windows XP, the Image File Execution Options registry key). If the
executable were removed, but the key were not, the system would stop working.
We plan to address this problem in the future.

6 Related work

In this section we briefly review the work done by the research community on
malware detection and analysis. We also present some recent results that focus
on execution of untrusted applications without any risk for the system and on
the problem of testing malware detectors.



6.1 Malware detection and analysis

The traditional approach for the detection of malicious code is based on signature
matching of various complexity [14]. A signature can be a sequence of bytes that
identifies pieces of data or code of the malicious program, but even very complex
algorithms that test whether a particular program satisfies certain properties.
The advantage of using sophisticated detection methods is that signatures be-
come more generic and thus a single signature can be used to detect multiple
variants derived from the same family. On the other hand, from the remediation
point of view, excessively generic signatures do not allow to distinguish variants.
If single variants cannot be told apart, the remediation procedure cannot take
variant-specific behaviours into account and cannot perform a complete cleanup.

Purely signature-based approaches have demonstrated their weaknesses when
packed, polymorphic and metamorphic malware appeared. The research commu-
nity started to move toward behaviour-based solutions. Behaviour-based detec-
tion [3,4] and analysis [15,16,17,18] approaches do not focus on the syntactic
structure of the analysed program, but try to consider its semantics. Because
these solutions work by observing a concrete execution of the malicious sample,
they could provide much more accurate remediation procedures.

6.2 Execution of untrusted applications

In [19], Hsu et al. present a framework to automatically remove a malicious
program from the system and also to repair any damage it could have done. The
safe state of the system is restored by using the logs of the execution and by
reverting each logged operation. An alternative approach is proposed by Liang et
al. [20]. Untrusted programs are executed in a sandbox and the changes made to
the “virtual” system are committed to the real one at the end of the execution,
only if the program can be considered innocuous.

In the operating systems and self-healing communities, a number of different
works investigate the problem of automatically reverting the modifications made
by an unwanted program. As an example, in [21] the authors present Speculator,
a modified Linux kernel that allows speculative execution of user-space processes.
Speculator avoids blocking user processes during slow I/O operations (such as
remote I/O operations): the system predicts the operation’s result, checkpoints
the process and allows it to continue; later, if the prediction is found to be
incorrect, the process is reverted to the checkpointed state.

6.3 Evaluation of state-of-the-art malware detectors

The need for automatic testing methodologies targeting anti-malware products
has been clearly stated by the Anti-Malware Testing Standards Organisation
(AMTSO) [10]. However, little research work focuses on the evaluation of mal-
ware detection and remediation solutions. One of the few examples is represented
by [22]; in this paper, Christodorescu et al. present a technique for generating
test-cases to stress malware detectors. They use program obfuscation techniques



to evaluate the resilience of malware detectors to various transformations of the
malicious code. The goal of our paper instead is to estimate the completeness of
remediation procedures. For this reason, the testing infrastructure described in
our paper could complement their work, in order to produce more comprehensive
testing methodologies.

Other researchers highlighted the importance cleaning infected systems and
the importance of testing such functionality [23,24]. Motivated by the same con-
victions, this paper contributes to address this problem by proposing a fully
automated testing methodology and an extensive evaluation of several state-of-
the-art commercial products.

7 Conclusions

Malware detectors are essential components for preserving the security of com-
puter systems. They allow to detect and prevent malicious software and, when
malware cannot be stopped from infecting a system, they allow to recover from
the infection. In this paper we presented an automated testing methodology to
assess the completeness of remediation procedures used by malware detector to
clean up compromised systems. We used this methodology to test six of the
most rated malware detectors on the market and found out that the dangerous
effects of an infection are seldom completely removed. In the future we plan
to investigate automatic techniques for generating more complete remediation
procedures.
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