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Abstract Botnets are large groups of compromised machines (bots)
used by miscreants for the most illegal activities (e.g., sending spam
emails, denial-of-service attacks, phishing and other web scams). To pro-
tect the identity and to maximise the availability of the core components
of their business, miscreants have recently started to use fast-flux ser-
vice networks, large groups of bots acting as front-end proxies to these
components. Motivated by the conviction that prompt detection and
monitoring of these networks is an essential step to contrast the prob-
lem posed by botnets, we have developed FluXOR, a system to detect
and monitor fast-flux service networks. FluXOR monitoring and detec-
tion strategies entirely rely on the analysis of a set of features observable
from the point of view of a victim of the scams perpetrated thorough
botnets. We have been using FluXOR for about a month and so far we
have detected 387 fast-flux service networks, totally composed by 31998
distinct compromised machines, which we believe to be associated with
16 botnets.

1 Introduction

A malware is a program written with malicious intents. Today, the main moti-
vation behind malware writing and their use is the easy financial gain. Smart
miscreants write malware and sell them in the wealthy underground market to
other miscreants [1]. These malicious programs are “installed” on machines all
around the world, without any permission of the users, and transform these ma-
chines into bots, i.e., hosts completely under to control of the attackers. Bots
are then used to steal computational resources and confidential information, to
relay spam email messages, to mount distributed denial of service (DDoS) and
other attacks, to host phishing websites, and for other kinds of scams. To max-
imise the profit from these activities, multiple “infected” machines are grouped
together in a botnet (a network of bots) and used simultaneously to achieve the
same purpose [2]. With a single command, miscreants can control hundreds or
even thousands of bots [3]. The botnet problem is so extensive nowadays that it
has made headlines several times [4,5].

The most well known botnets are those related with the Warezov and the
Storm worms [6,7]. These botnets are infamous for the huge amount of spam
emails they have been generating, often containing links to malicious web servers
hosting various frauds as well as malicious web pages able to infect the machines



of the visitors with malware. Of particular interest is the technique used by
those botnets to masquerade the identity of the malicious web servers in or-
der to maximise the availability of the service. If these web servers are difficult
to identify, they are difficult to shutdown, and they can hit more and more
victims. This technique, known as fast-flux service network, is very simple and
consists in associating the canonical hostname of a malicious web server (e.g.,
www.factvillage.com) with multiple IP addresses corresponding to the ad-
dresses of a subset of the bots of the botnet. Each victims’ request to visit the
web server will thus reach one of the bots and the bot will proxy the request
to the real server, making impossible to discover the identity of the malicious
web server without having full control of one of these bots. The association be-
tween the hostname of the web server and the IP addresses of the bots acting
as front-end proxies is updated very frequently such that newly compromised
machines can immediately take part in the game and dead bots are excluded
without affecting the availability of the service [8].

The impact that botnets using fast-flux service networks have on the Internet
community is tremendous [9]. Although the average lifetime of domains used for
malicious purposes, including the domains associated with fast-flux service net-
works, is very short, the lifetime of botnets using those domains is much longer.
As the identity of the hosts associated with those domains is well protected and
the bots that are part of the networks are difficult to track, botnets are difficult
to eradicate. Authorities put a lot of efforts to take down the domains registered
for malicious purposes, but these efforts are worthless because the bots are not
isolated. Before the domain is suspended, a new one is registered and associated
with the same set of bots, to replace the old one. Consequently, miscreants can
continue their malicious activity through their botnets without interruption.

The natural approach to monitor and detect botnets activity and the bots
involved is to passively analyse the network traffic. Unfortunately, that requires
the access to a significant network segment [10,11,12,13,14,15,16]. Fast-flux ser-
vice networks are interesting from the research point of view because they allow
to “observe” the botnet phenomenon from a completely different prospective,
the prospective of a victim of the botnet. In fact, the visibility a victim has on
the botnet is quite significant. More precisely, imagine a recidivous victim that
visits very frequently a malicious web site associated with a botnet and served
through a fast-flux service network. At each visit the victim is likely to access the
web site through a different bot (recall that the canonical hostname of the web
server is resolved into the IP address of one of the bots). After a large number of
visits, the recidivous victim will have discovered the IP addresses of the majority
of the active bots of the botnet.

This paper presents FluXOR, the system we have developed to detect and
monitor fast-flux service networks. Given a suspicious hostname, FluXOR, by
behaving like a recidivous victim, tries to detect if the hostname conceals a fast-
flux service network. Hostnames associated with fast-flux service networks are
then continuously monitored to find out all the IP addresses of the compromised
machines that are part of the botnet associated with the service network itself.
FluXOR detection strategy is based on the combined analysis of nine distinguish-



ing features describing some properties of (i) the domain the suspicious hostname
belongs to, (ii) the degree of availability of the potential fast-flux service network,
and (iii) the heterogeneity of the potential hosts of the network.

We have been using FluXOR since the beginning of January 2008 to monitor
potential fast-flux service network whose hostnames were collected from spam
emails. So far the system correctly classified all the analysed hostnames (4961)
and 7.8% of them (387) turned out to be associated with fast-flux service net-
works, involving 31998 distinct compromised machines located all around the
world. Real-time results of the analysis are available on-line at http://fluxor.
laser.dico.unimi.it.

To summarise, this paper makes the following contributions:

– identification of the features that, combined together, allow to precisely de-
tect whether or not a suspicious hostname conceals a fast-flux service network
(Section 3 and 4).

– Implementation of a strategy to monitor a fast-flux service network and to
detect the majority of the bots that are in the network (Section 5).

– Empirical analysis of the fast-flux service network phenomenon (Section 6).

2 Problem description and solution overview

A fast-flux service network is a network of compromised hosts that is used to
carry out malicious activities, for example to deliver malware to users, to dis-
tribute illegal materials or to steal users’ credentials [8]. The service network
is identified by one or more fully qualified domain names (FQDNs) that are
resolved to multiple (hundreds or even thousands) different IP addresses, be-
longing to unaware compromised hosts, the fast-flux agents (or bots). The fun-
damental characteristic of a fast-flux service network is high availability, which
is provided by continuously updating the pool of agents serving the network.
Newly compromised hosts are inserted into the network, inactive or unreliable
hosts are removed, and victims are always redirected to the active and most re-
liable agents. The key is a combination of a very short time-to-live (TTL) of the
DNS resource records that associate the canonical name of the service network
with the set of IP addresses of the agents and a round-robin selection of these
records [17,18]. In the common setup, the agents do not carry out the malicious
activities, but they simply redirect received requests to the fast-flux mother-ship,
the controlling element of the network, whose identity must be kept secret. With
this setup, it is not possible to identify the mother-ship without having complete
control of one of the agents.

Imagine that the fully qualified domain name www.factvillage.com conceals
a fast-flux service network composed of hundreds of agents and that it is used to
attract users, with the promise of very cheap drugs, and to infect their machines
with malware. Figure 1 shows how our sample malicious contents provider lever-
ages the fast-flux service network to serve the victims. A victim, wishing to visit
the on-line drugstore, queries a name server (usually a non-authoritative name
server which recursively queries the authoritative one) to resolve the hostname
of the website. The name server returns the addresses of a subset of the agents
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Figure 1. An example of the fast-flux service network used by our sample malicious web
server www.factvillage.com, the entities involved and the communication between
these entities (nodes in gray denote hosts under the control of the miscreants and
shaded agents denote those that are not currently serving the network).

currently active in the network, and the victim connects to one of them. The
agent then proxies the victim’s requests to the mother-ship, which in turn de-
livers the malicious contents. In background, the mother-ship, or another entity
controlled by the miscreants, continuously monitors the status of the agents and
updates the resource records of the authoritative name server of the domain (in
the example the authoritative name server is ns0.uthvfybz.com), to distribute
the network across the reliable agents. The short time-to-live associated to the
DNS resource records prevents non-authoritative name servers to cache for too
long the records that define the subset of agents currently serving the network.
When the cache expires the name server contacts again the authoritative name
server for the domain and gets the new list of agents serving the network. These
agents are selected from the set of all active agents in a round-robin fashion, to
balance their load.

Our goals are, given a fully qualified domain name, to verify whether it con-
ceals a fast-flux service network and, in such a case, to identify all the agents
that are part of the network. The prompt identification and isolation of all the
agents is important because if the service network is shutdown but the agents
remain under the control of miscreants, a new service network of the same extent
can be created by simply registering a new domain and reusing the same agents.
Moreover, these agents can be used for other malicious purposes (e.g., they can
be used as DDoS zombies, to steal personal information from the hosts they
are running on, and to act as spam bots). FluXOR is the name of the system
we have developed to accomplish these goals. The key idea behind the system
is that a fast-flux service network has multiple distinguishing features that are
not typically found in benign fully qualified domain names. Some of the most



characteristic features are (i) the time-to-live of DNS resources records, (ii) the
large number of IP addresses into which the canonical hostname is resolved, and
(iii) the heterogeneous set of organisations that own these addresses. Clearly,
these features taken singularly are not enough to distinguish between benign and
malicious hostnames. As an example let us compare our sample malicious host-
name www.factvillage.com with the benign hostname database.clamav.net.
The latter is a typical example of how DNS resources records with very small
time-to-live and round-robin can be used to distribute the load across multiple
mirrors (in this case the mirrors are used to distribute updates for the database
of signatures of the ClamAV anti-virus [19]). Moreover, as mirrors are hosted by
universities and companies, the hosts running a mirror belong to different net-
works, owned by different organisations, and are distributed around the world.
Despite hosts like database.clamav.net have most of the characteristics of a
fast-flux service network, FluXOR, by monitoring the suspicious hostname for
a small period of time and by combining the extracted features using a näıve
Bayesian classifier [20], can precisely distinguish between hostnames that are
associated with fast-flux service networks from those that are not. It is worth
noting that the chosen approach works well also when some of the selected fea-
tures are not available.

When a fast-flux service network is detected, FluXOR continuously monitors
the service network, behaving like a victim and periodically querying various
DNS servers to resolve the canonical name of the network for the purpose of
enumerating the IP addresses of the compromised hosts that, even for a small
period of time, are used as agents.

A fast-flux service network, like the one described in this section, is known
in the literature as a single-flux network. More complex setups are possible, an
example is a double-flux network [8]. FluXOR handles indifferently any kind of
fast-flux service network, but unfortunately the current implementation does not
distinguish between the various types.

For the remaining of the paper, for conciseness, we will refer to the FQDNs
associated with a fast-flux service network as malicious and to all the others as
benign, although what in the paper is considered benign could be an hostname
created for other malicious purposes but not associated with a fast-flux service
network. Moreover, we will refer to any hostname whose maliciousness has not
been established yet as suspicious.

3 Characterising fast-flux service networks

The features used by FluXOR to distinguish between benign and malicious host-
names are summarised in Table 1 and discussed in detail in the remaining of the
section. The features are grouped in three categories: (i) features characteris-
ing the domain name to which the suspicious hostname belongs to, (ii) features
characterising the degree of the availability of the network that is potentially
associated with the suspicious hostname, and (iii) features characterising the
heterogeneity of the potential agents of the network. Some of the features might
appear similar initially, but, as shown later, each of them tells us something im-



Category # Description

Domain name
F1 Domain age

F2 Domain registrar

Availability of
the network

F3 Number of distinct DNS records of type “A”

F4 Time-to-live of DNS resource records

Heterogeneity
of the agents

F5 Number of distinct networks

F6 Number of distinct autonomous systems

F7 Number of distinct resolved qualified domain names

F8 Number of distinct assigned network names

F9 Number of distinct organisations

Table 1. Summary of the features used to distinguish between benign and malicious
hostnames, grouped by category.

portant about the suspicious hostname, especially because some features might
not be always available and because there is no well known convention about
how some of them are attributed.

3.1 Features characterising the domain name

Domain age (F1). Benign domains are usually characterised by a relatively long
age. Domains used for malicious purposes instead are typically active only for
short periods of time. As soon as they are identified, they are deactivated by
the authority in charge of the corresponding top-level domain. Thus, miscreants
have to register new domains and start to use them right away, to successfully
achieve their malicious purposes. The average age of a benign domain is much
older than the average age of malicious domain. Indeed, during our experiments,
we have estimated that the average age of malicious hostnames is less than five
weeks.

Domain registrar (F2). We empirically observed that most of the domains used
to implement fast-flux service networks are registered through a limited number
of registrars, typically located in countries with a lax legislation against cyber-
crime. Our hypothesis is that these registrars perform almost no check when
domains are registered. Miscreants can easily complete the registration process
using false identities and paying with stolen credit card numbers, making impos-
sible, for the authorities, to identify the person who has effectively registered a
domain. On the other hand, the set of registrars used to register benign domains
is more heterogeneous and is not likely to overlap with the set of registrars used
by miscreants.

3.2 Features characterising the degree of availability of the network

Number of distinct DNS “A” records (F3). Fast-flux service networks are gener-
ally composed by a large number of agents. The authoritative name server for the
malicious domain, when queried, returns the set of active agents (i.e., the subset



of agents currently serving the network) by returning multiple DNS “A” records,
each one containing the IP address of a specific agent. These resource records are
periodically updated by the fast-flux mother-ship to put in the network newly
compromised agents and to remove the faulty ones. Thus, after a reasonable long
span of time, the number of distinct DNS records of type “A” (i.e., agents IP
addresses) that had or have been associated with a malicious FQDN is rather
large. The higher the number of distinct DNS records of type “A” associated to
the same FQDN, the larger the number of potential agents, and the higher the
probability that the FQDN conceals a fast-flux service network.

Time-to-live of DNS resource records (F4). The fundamental characteristic of
fast-flux service networks is the high frequency at which the set of active agents
is updated. Most of the agents are end-user machines and consequently it is rea-
sonable to expect that they will appear on-line and disappear very frequently.
Thus, to guarantee the high availability of the service offered through the fast-
flux network, the set of active agents has to be updated as soon as one of them
changes its state. Moreover, the update must be promptly propagated across
the Internet, down to the victims. To achieve this goal, the authoritative name
server for the malicious domain associates a very short time-to-live to the DNS
resource records of the domain. That forces non-authoritative name servers, used
by the victims, to flush their cache and to query the authoritative name server
very frequently, that in turn returns a different set of active agents every time.
The higher the time-to-live associated to the various DNS resource records of a
domain, the lower the probability that the domain is malicious. Unfortunately
the converse is not always true. Several authoritative name servers for benign
domain names associate very short time-to-live to their records for various pur-
poses.

3.3 Features characterising the heterogeneity of the agents

Number of distinct networks (F5). Fast-flux agents are usually randomly com-
promised hosts scattered all around the globe. Thus, a malicious FQDN is re-
solved to many different IP addresses belonging to hosts that very likely belong
to different networks. On the other hand, when a benign FQDN encompasses
multiple hosts, for load-balancing purposes, these hosts often belong to the same
network because they are owned by the same company and physically very close
to each other. The higher the number of distinct networks associated to the
same FQDN, the more scattered the hosts are, and the more likely these hosts
have been compromised and have been used as fast-flux agents. As an example
compare the networks associated with the benign FQDN hp.com with those as-
sociated with the malicious FQDN www.factvillage.com, reported respectively
in Table 2(a) and Table 2(c). The IP addresses associated with the former all
belong to the same network (15.0.0.0/8), while the addresses associated with
the latter belongs to completely different networks. As shown in the example of
Table 2(b) where each IP address associated with www.avast.com belongs to a
separate network, this is not always the case.



IP address F5 F6 F7 F8 F9

15.216.110.140 15.0.0.0/8 AS9218 polyserve.com HP-INTERNET Hewlett-Packard

15.192.45.22 15.0.0.0/8 AS9218 polyserve.com HP-INTERNET Hewlett-Packard

15.200.30.24 15.0.0.0/8 AS9218 polyserve.com HP-INTERNET Hewlett-Packard

(a) hp.com (benign)

IP address F5 F6 F7 F8 F9

67.228.112.196 67.228.0.0/16 AS36351 avast.com SOFTLAYER-4-5 SoftLayer Tech.

216.12.205.130 216.12.192.0/19 AS36420 avast.com EVRY-BLK-4 Everyone Internet

74.86.245.119 74.86.0.0/16 AS36351 avast.com SOFTLAYER-4-4 SoftLayer Tech.

(b) www.avast.com (benign)

IP address F5 F6 F7 F8 F9

61.18.66.? 61.18.0.0/16 AS9908 hkcable.com.hk HKCABLE-HK HK Cable TV

218.47.195.? 218.47.0.0/16 AS4713 ap.plala.or.jp PLALA Plala Net. Inc.

81.173.151.? 81.173.151.0/24 AS8422 netcologne.de NC-DIAL-IN-POOL NetCologne

(c) www.factvillage.com (malicious)

Table 2. Comparison of the host specific features (F5 to F9) characterising two be-
nign and one malicious FQDNs (the entries in bold are those common to multiple IP
addresses).

Number of distinct autonomous systems (F6). An autonomous system (AS) is a
connected group of one or more IP prefixes run by one or more network opera-
tors with a single and clearly defined routing policy [21]. Thus, distinct networks,
but physically very close, might be connected to the Internet through the same
AS. As with the previous feature, the majority of benign FQDNs are mapped
to hosts located in a circumscribed geographical area and are all part of the
same autonomous system. On the other hand, as the agents of a fast-flux net-
work are scattered across all the countries, they typically belong to distinct
autonomous systems. As an example let us compare the autonomous systems
associated with the benign FQDN www.avast.com, with those associated to
www.factvillage.com (Tables 2(b) and 2(c) respectively). In the first case we
have three distinct networks but only two autonomous systems. In the second
case, each host, as located in a different country, is part of a different AS.

Number of distinct resolved qualified domain names (F7). Even if a FQDN is
associated with multiple hosts scattered around the globe and part of distinct
networks and autonomous systems, the hosts might still be owned by the same
company or organisation and thus they can share the same qualified domain
name. As an example let us compare the benign FQDNs of Tables 2(a) and 2(b)
with the malicious www.factvillage.com of Table 2(c). In the first two cases
both hostnames are resolved into multiple IP addresses, but these addresses are
in turn resolved into canonical hostnames belonging to the same domain (i.e.,
polyserve.com and avast.com respectively). The example of www.avast.com
clearly indicates that all the IP addresses found are legitimate. Unfortunately,
that is not completely evident in the case of hp.com because the domain name
(polyserve.com) does not match the domain name of the suspicious FQDN
under analysis. Nevertheless, all the IP addresses found are part of the same



domain, which is not common for malicious FQDNs. Indeed, fast-flux agents
are compromised hosts belonging to distinct organisations, and the canonical
hostnames associated with their IP addresses are solely under the control of the
respective owners of the networks and the attacker cannot control in any way
these information. In the case of www.factvillage.com, each of the three IP
addresses found, probably used by dial-up hosts, is resolved into a hostname with
a distinct qualified domain, corresponding to that used by the ISP providing the
service.

Number of distinct assigned network names (F8). The network name is the name
assigned to a network by the registration authority. Multiple network addresses
can be logically grouped under the same network name. This is often the case
when the different network addresses are owned by the same company or organ-
isation. Like the other three previous features, the number of distinct network
names is an indication of the degree of scattering of the hosts associated with
the suspicious FQDN.

Number of distinct organisations (F9). Each network is assigned to an organisa-
tion, but as with network names, same organisation can own multiple networks
with one or multiple names. As an example let us consider the benign domain
avast.com analysed in Table 2(b). Each network is assigned a distinct network
name, but two of these networks belong to the same organisation (i.e., Soft-
Layer Technologies Inc.). Clearly, fast-flux agents randomly distributed around
the world share a limited number of organisations.

4 Combining the features for detection

FluXOR initially monitors suspicious hostnames for a short period of time, after
which the selected features are analysed to determine whether the domain is
malicious or not. The number of domains is incredibly growing. Indeed, it has
been estimated that several hundreds of thousands of generic second-level do-
mains (e.g., .com, .org, .net) are registered daily [22]. Consequently, the number
of suspicious hostnames to monitor can be very large and it is essential that
a precise classification can be accomplished in the shortest period of time, to
reduce the workload of the system, but also to promptly intervene to mitigate
the damage fast-flux service networks and their bots can cause to the Internet
community.

Table 3 shows a comparison of the features of three FQDNs, associated with
as many distinct fast-flux service networks, with those of three benign hostnames.
Note that the features reported in the table were extracted after only three hours
of monitoring. From a quick glance at the numbers in the table it should be clear
that each of the selected features effectively tells us something important about
the maliciousness of a hostname. Although it is easy to spot by hand benign and
malicious hostnames, the numbers in the table show a high variability in the most
intuitive features (e.g., F3 and F4). For all the analysed hostnames reported in
the table it was possible to extract all the selected features. In the general case



FQDN F1 F2 F3 F4 F5 F6 F7 F8 F9

B
e
n
ig

n

www.avast.com 539 NetworkSolutions 12 3600 5 3 1 5 2

adriaticobishkek.com 65 Melbourne IT 21 1200 1 1 1 1 1

google.com 542 MarkMonitor 3 300 2 1 1 1 1

Mean 493.27 N/A 2.86 4592.53 1.27 1.11 1.08 1.21 1.07

Standard dev. 289.27 N/A 3.89 7668.74 0.65 0.36 0.74 0.58 0.25

M
a
li
c
io

u
s www.eveningher.com 18 PayCenter 127 300 83 49 33 71 54

www.factvillage.com 2 PayCenter 117 300 81 46 34 67 54

www.doacasino.com 2 NameCheap 33 180 19 14 11 19 14

Mean 4.85 N/A 98.13 261.49 63.75 38.36 27.98 53.58 41.47

Standard dev. 4.9 N/A 37.27 59.64 23.91 12.34 8.5 18.73 15.41

Table 3. Comparison of three sample benign and malicious FQDNs using the selected
features (F1 is measured in weeks) and comparison of the features of the average benign
and malicious FQDNs (computed from a set of about 75 benign and 215 malicious
hostnames monitored for about three hours).

some of these features might be missing, but nevertheless the system must be
able to correctly discern between malicious and benign hostnames. Furthermore,
hosts associated with malicious hostnames tend to be rather scattered, but the
degree of the scattering and the number of fast-flux agents might depend on
the amount of time the fast-flux service network has been active. If hosts are
compromised and turned into agents using a self-propagating malware (e.g., that
identifies targets using weak random scanning), it is reasonable to believe that,
in the early stage, the agents are rather localised and limited in number. Our
goal is to be able to detect if a hostname is malicious as soon as possible, even
when the number of agents involved is very small.

For these reasons the detector tries to achieve the best accuracy by combining
the selected features using a näıve Bayesian classifier [20]. Given the features of
a suspicious hostname, the classifier returns the class (i.e., benign or malicious)
to which the hostname is most likely to belong to. The classifier was trained with
a set of malicious and benign FQDNs that we manually classified, with the help
of data obtained after a week of monitoring. The set of malicious hostnames was
composed of hostnames found in spam emails. The set of benign hostnames was
composed of hostnames found in spam and non-spam emails. Furthermore, the
latter set was extended, to make it more heterogeneous, by adding the address
of some randomly selected websites we recently visited. The assumption that
the features are completely independent, made by this type of classifier, might
appear to simplistic (e.g., features like F5, F6, F8, and F9 could be correlated).
Nevertheless, this approach turned out to have very good performance in many
real-world situations and the work of Zhang has shown that the efficacy of näıve
Bayesian classifiers has some theoretical foundations [23]. In our context, as
discussed later in Section 6, this approach gives very accurate results (for this
reason we decided not to evaluate other classifiers). Our hypothesis is that, in
practise, no real correlation between the alleged correlated features (F5, F6, F8,
and F9) exists because no convention regulates how ISPs should partition their
address space. For example the network associated with a single autonomous
system (F6) could be divided into sub-networks and multiple sub-networks (F5)
can be assigned to the same organisation (F9).



Figure 2. Typical deployment of the system. Multiple collectors and monitors can be
used to distribute the workload and to uniformly blend the system in the victims.

5 Architecture and implementation of the system

The architecture of FluXOR is very simple. The system is divided in three com-
ponents and each one accomplishes a very specific task: (i) one or more collectors
of suspicious hostnames, (ii) one of more monitors of suspicious and malicious
hostnames, and (iii) a detector of fast-flux service networks. Figure 2 shows the
typical deployment of the system.

FluXOR is entirely developed in Python and consists of about 2150 LOC,
without including the code of the web interface used to display the results of the
analysis.

5.1 Collector

The collector harvests from various sources hostnames that could be associ-
ated with fast-flux service networks. Examples of sources are unsolicited emails,
instant messages and post in public web forums and blogs. The current imple-
mentation of FluXOR only supports harvesting of suspicious hostnames from
emails. In the future this component will be extended to support other sources,
for example using web crawlers and honeypots. Newly collected hostnames are
flagged as suspicious and are considered as such and monitored until the detector
classifies them.

5.2 Monitor

The monitor is responsible for monitoring suspicious and malicious hostnames.
Benign FQDNs, instead, do not need to be monitored (recall that benign host-
names are those already monitored in the past and classified as such). The dis-
tinguishing features used by FluXOR to detect fast-flux service networks are ex-
tracted from data obtained by querying two different sources: (i) non-authoritative
name servers and (ii) WHOIS servers. Once a malicious hostname is detected, in-
stead, it is sufficient to perform a subset of the queries used to monitor suspicious
hostnames, that is, those used to extract features describing the heterogeneity



of the agents. For statistical and analysis purposes other information about the
agents are also collected (e.g., the country in which the hosts are located and
their geographical location). A description of the queries performed follows.

Features characterising the domain name (F1 and F2). Given a FQDN like
www.factvillage.com, the age of the domain and the registrar in charge for
the domain are determined through WHOIS queries on the name of the second-
level domain (e.g. factvillage.com). Although the query is conceptually trivial,
it presents a serious challenge from the practical point of view. The WHOIS pro-
tocol does not define the format in which replies to queries have to be formatted
and registries are free to choose the format they like more [24]. Moreover, some
registration authorities omit to publish part of the information needed by our
analysis. Today the entire IPV4 address space is assigned to 10 different reg-
istries. Things are more and more complicated for top-level domains because
each domain is assigned to a different registry1. Currently we are using a cus-
tom WHOIS client that is able to parse the format used by the most common
registration authorities. To deal with the registries not currently supported by
our client, we rely on a commercial service, that extracts WHOIS information
and convert them in XML and offers a free limited number of queries per day. In
the future we will extend our client to make the system completely independent
from third parties.

Features characterising the degree of availability of the network (F3 and F4).
The natural approach to enumerate all the resource records of type “A” asso-
ciated with a particular FQDN (i.e., the IP addresses of the potential fast-flux
agents) and the time-to-live of the various records would be to query directly
the authoritative name server for the suspicious domain. Although at each query
we would always obtain “fresh” records and we would have the highest chance
to see previously unseen records (i.e., in the ideal case records are rotated at
each query and always have the highest time-to-live), the malicious authoritative
name server could easily correlate the high number of queries with a system like
FluXOR and consequently fool the analysis by returning fake resource records.
The solution currently adopted by FluXOR is to collect the information by issuing
recursive queries through multiple public non-authoritative name servers, such
that FluXOR queries are blended in the victims’ queries. To estimate the max-
imum time-to-live of the resource records, to maximise the number of agents
seen, and to minimise the network traffic, non-authoritative name servers are
queried immediately after the cached records have expired.

Features characterising the heterogeneity of the agents (F5 to F9). The remain-
ing features are specific to the IP addresses into which a suspicious FQDN is
resolved to. The number of distinct networks (F5) associated with the same

1 Obviously, a malicious registrar returning (directly or indirectly) fake answers to
our WHOIS queries could fool our system. However, in our opinion, that is very
improbable: top-level domain registrars are accredited directly by ICANN and they
risk to compromise their entire business if they are found to be malicious.



FQDN is computed by enumerating the distinct networks associated with the
IP addresses of the potential fast-flux agents. This information can be obtained
through a WHOIS query, one for each IP address, directed the respective reg-
istry. Similarly, the number of distinct autonomous systems associated with the
same FQDN (F6), is obtained by querying the databases of the regional reg-
istries for the AS to which each IP address belongs to. The number of distinct
domain names associated with the IP addresses of the potential fast-flux agents
(F7) are obtained by querying name servers for pointer (PTR) resource records
associated with each IP address (this kind of query is commonly known as “re-
verse lookup”). The hostnames obtained are subsequently split to extract the
domain name. The network name and the organisation owning the network (F8

and F9) are obtained through WHOIS queries. Unfortunately some of the infor-
mation from which we extract the features of interest are not always available.
An example are PTR records associated with the IP addresses of the potential
agents.

5.3 Detector

The detector of malicious hostnames feeds the set of collected features of the
suspicious hostname to the näıve Bayesian classifier for the classification. The
classifier is built on top of Weka [25], using the classification algorithm called
“NaiveBayesSimple”, which models numeric attributes by a normal distribution.

6 Experimental results

We have been running FluXOR since the beginning of January, but unfortunately
the system has been working without interruption only since mid January. Cur-
rently the monitor and the detector are located on the same machine, an AMD
Athlon XP 1.8GHz with 384Mb of RAM, running GNU/Linux and using MySQL
for the persistent storage. The detector has been trained with three different
data-sets, containing features extracted after one, two, and three hours of mon-
itoring respectively. The three training sets were composed by 50 benign and 75
malicious FQDNs manually analysed and classified. The collector was located on
the mail server of our laboratory and processed all the spam emails forwarded
by the mail server of our department. Malicious FQDNs were all extracted from
spam emails, while benign hostnames were extracted from emails (both spam
and non-spam) and from the history of our browsers.

Table 4 summarises the most important numbers of our experiments: the
volume of spam email messages processed, the number of URLs extracted, the
number of FQDNs active at the time the emails were received, the number of
fast-flux service networks detected, the number of distinct fast-flux agents, and
the number of hypothetical botnets the detected fast-flux agents were part of.
About 7.8% of the active FQDNs turned out to conceal fast-flux service networks
served by 31998 distinct fast-flux agents, which we believe to belong to 16 distinct
botnets (we considered two fast-flux service networks associated with the same
botnet if they were pointing to the same website).



Description #

Processed spam email messages 44804

Extracted URLs 15281

Active FQDNs (whose hostname could be resolved) 4961

Fast-flux service networks 387

Fast-flux agents 31998

Botnets 16

Table 4. Summary of the results obtained using FluXOR to monitor the suspicious
hostnames found in spam emails. Note that the number of agents is the number of
distinct IP addresses. Dial-up hosts using dynamically assigned addresses might use
multiple addresses and multiple hosts might share some addresses.

We evaluated the detection accuracy automatically, before training the clas-
sifier, and manually by comparing the output of the detector with our belief.
Although during the manual analysis we found some corner case benign and
malicious hostnames, the detector always classified the suspicious hostnames cor-
rectly. That is, we had zero false-positives. We also tried to correlate the data
collected in the last month to understand the botnet phenomenon by observ-
ing botnets activity from the prospective of a victim, starting from hostnames
associated with fast-flux service networks found in spam emails.

6.1 Detection accuracy

We evaluated the accuracy of our detection strategy following two different
strategies: (i) an automatic cross-validation with the three training data-sets
and (ii) a manual analysis of a random subset of the active FQDNs extracted
from the emails.

Part of our training data-set was used to estimate the accuracy of the model
using cross-validation, with 5 and 10 folds [26]. No hostname was misclassified.
The manual analysis was performed by comparing the response of the detector
with our belief about the maliciousness of the hostnames. Hostnames whose ma-
liciousness was difficult to attest were monitored for a day. The detector was
invoked three times on each sample, the first time with the features extracted
after one hour of monitoring and the corresponding model, the second and the
third time with the features extracted after two and after three hours of monitor-
ing, and the corresponding model, respectively. Note that the amount of active
hostnames processed were rather large and impossible to analyse manually in its
entirety. Thus, we pruned the set using a filter to identify all the hostnames that
were undoubtedly benign (i.e., those, after three hours of monitoring, associated
with only two or less IP addresses and classified as benign). The manual analysis
confirmed the correctness of our classifier, no hostname was misclassified.

During the manual analysis of the accuracy of the detector we came across
some peculiar benign hostnames that had some of the characteristic of mali-
cious hostnames. Two examples of these hostnames are imageshack.us and
database.clamav.net. These hostnames are associated with very small time-



to-live and are resolved in multiple IP addresses, 129 and 21, respectively2. All
the 129 distinct IP addresses associated with the first hostname belong to the
same network. That makes us believe that the hosts are hosted in a server farm
somewhere and that load-balancing is implemented using DNS round-robin. On
the other hand, the IP addresses associated with database.clamav.net (see
the discussion in Section 2) are located in 12 distinct networks, because mirrors
are voluntarily hosted by companies and universities. Both hostnames belong to
domains registered several years ago through registrars that are not commonly
used by miscreants. In both cases FluXOR correctly classified the hostnames, even
when the detection was performed using the features collected during one hour
of monitoring only. Other examples of correctly classified benign hostnames that
share some of the features of hostnames used for fast-flux service networks are
pool.ntp.org and en.wikipedia.org.nyud.net (Wikipedia mirrored through
Coral Content Distribution Network).

We also identified several very young (or not very active) fast-flux service
networks for which, after an hour of monitoring, we only saw from three to
five distinct agents. After three hours of monitoring the size of the network
was still very small and reached only seven or eight agents. Despite the small
number of agents, the hostnames were always classified as malicious, even when
detection was performed using the data collected in an hour of monitoring. Not
completely convinced of the response of the detector, we continued to monitor
the hostnames. After several days the service networks encompassed hundred of
hosts.

Three observations are worth mentioning. First, the detector is surprisingly
precise. Second, in less than three hours we can precisely tell if a FQDN is
malicious or not. Third, the current status of the fast-flux service network might
not reflect the status of the network in the future (e.g., a hostname can be used
for any kind of purpose at the beginning and then associated with a fast-flux
service network in the future). The detector can only classify the current status
of the hostname and, in order to detect a change of the status, the hostname
must be monitored and classified again.

6.2 Empirical analysis of the fast-flux service networks phenomenon

Although we collected suspicious hostnames from a single source only and the
number of hostnames collected was rather small, the number of detected fast-
flux service networks and the number of their agents is unexpectedly very large.
About 7.8% of the hostnames analysed were malicious. In the following para-
graphs we briefly summarise some results we believe are interesting. Real-time
and complete results of the analysis can be found on-line at http://fluxor.
laser.dico.unimi.it.

Figure 3 shows the number of fast-flux agents, belonging to six distinct net-
works, detected during the time. The number of agents detected depends on
2 The hostname database.clamav.net is resolved into different IP addresses according

to the country from which the request comes from. During our experiments we used
a public DNS located in the U.S., which is the country with the highest number of
IP addresses associated with the hostname.
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Figure 3. Number of fast-flux agents, serving some representative fast-flux service
networks, detected during the time.

many factors. For example the time-to-live of the DNS resource records, the
number of records returned at each query, and the frequency at which the set of
active agents is updated. The case of ibank-halifax.com is very impressive. In
less than a day we detected about 3000 agents. The turnaround of agents in the
average fast-flux service network is much smaller. The average number of new
agents detected daily was about 122.

We visited some of the websites served thorough the detected fast-flux ser-
vice networks and found out that several FQDNs were associated with the same
website. The networks were probably pointing to the same mother-ship. Our
hypothesis is that, to improve the availability of the system, miscreants regis-
tered multiple domains. If a domain was shutdown, victims could still be served
through the other domains. Thus, it is more difficult for the authorities to erad-
icate the scam. Besides the common website, this hypothesis is further corrob-
orated by the fact that multiple fast-flux service networks are served by the
same set of agents. Figure 3 shows that the number of agents detected during
the time for the FQDNs wherefell.com and cheaptmundo.com is growing sym-
metrically. We also observed that the two domains share the same authoritative
name servers and also about 81% of the agents. We believe it is reasonable to
assume that all the fast-flux networks pointing to the same website, and thus
used for the same fraud, are served by agents belonging to the same botnet. Ta-
ble 5 shows some of the hypothetical botnets associated with the detected fast
flux service networks, and their extent in number of agents (the name assigned
to the botnet is derived from the title of the main page of the website).

Figure 4 shows the geographical distribution of the detected agents. Their
heterogeneous geographical distribution testifies that the scale of the problem is
world-wide.



Botnet (Website) # networks # agents

Halifax scam 1 13958

Canadian Pharmacy 312 4773

EuroPrimeCasino 7 3242

Cheap EOM Software 1 2371

PosteItaliane scam 1 50

Table 5. Some of the fast-flux service networks detected, grouped by botnet.
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Figure 4. Geographical distributions of the detected fast-flux agents.

7 Related work

The botnet problem has been studied by the research community mainly from
two different prospectives: from the prospective of the bot, to study its code
and its behaviours, and from the prospective of the network, to study the traf-
fic generated by these bots. The approach proposed in this paper studies the
phenomenon from the prospective of a victim of the scams perpetrated by these
botnets.

The first analysis and characterisation of fast-flux service networks was pre-
sented by the HoneyNet project [8]. The report analysed the two types of net-
works seen so far (i.e., single-flux and double-flux service networks) and analysed
the behaviour of a malware with the capabilities of a fast-flux agent. The problem
of detecting and mitigating fast-flux service networks was concurrently addressed
by Holz et al. [27]. Our work and theirs are very similar. They also propose a
detection method based on the observation of some features common in fast-flux
service networks. However, while we employ 9 different features, Holz et al. focus
on just three features (i.e., the number of DNS “A” records, the number of DNS
“NS” records, and the number of distinct autonomous systems fast-flux agents
belongs to), one of which (the second) does not seem to be used at all for the clas-
sification. We believe such a limited set of distinguishing features could lead to
several false-positives, mostly because such features are also typical of domains
that employ some DNS load-balancing techniques (e.g., such as pool.ntp.org).
Our extensive evaluation has shown that FluXOR is undoubtedly robust and very



efficient. The work of Rajab et al. differs from ours in term of techniques and
goals. However, the point of view from which botnets are observed is similar to
ours [28]. We detect and monitor fast-flux service networks by performing simple
DNS and WHOIS queries. Similarly, in their work, Rajab et al. tracked botnets
by infiltrating in IRC channels and by measuring the cache-hit rate of the DNS
servers queried by the bots to contact their control centre.

The analysis of the network traffic generated by compromised machines trans-
formed into bots and the traffic generated by bot “management” open several
opportunities for understanding the phenomenon and for detection. Rishi, by
monitoring the network traffic for unusual IRC communications like connec-
tion to uncommon servers and ports and use of suspicious nicknames, detects
machines infected with bots [11]. Karasaridis et al. developed a transport and
application layer traffic analyser to detect IRC based bots on wide-scale [13].
Cooke et al. studied the effectiveness of detecting botnets by directly monitoring
IRC communications and other command and control activities. Unfortunately
their work demonstrated that a more comprehensive approach, based on the
correlation of data coming from multiple sources, is required to precisely de-
tect botnets. BotHunter correlates alerts coming from different types of sensors
to identify the communication sequences that occur during the infection pro-
cess (i.e., target scanning, infection exploit, binary egg download, and outbound
scanning) [12]. Dagon et al. used DNS redirection to detect machines part of
specific botnets and to understand how time and geographical location affect
the spread dynamics of these botnets [14]. The problem of understanding how
challenging is to estimate the size of botnets were addressed by Rajab et al. [3].
A similar problem was subsequently addressed by Dagon et al. [10]. They pro-
posed several metrics to measure the utility of botnets for various activities and
presented a taxonomy of botnets based on these metrics and on the topological
structure of the networks.

Many researchers have studied botnets by studying how bots behave and how
they are implemented. These bots can be analysed using dynamic, static, or a
hybrid dynamic and static analysis. BotSwat characterises and detect the typical
behaviours of bots using dynamic taint analysis [29]. Barford et al. statically
analysed the codebase of four of the most common IRC bots to understand
their propagation methods, the mechanism used for their remote control, the
delivery and the obfuscation mechanisms used [30]. Other specific bots have
been thoroughly analysed to understand the new techniques used and the best
method to block them [31,32,7].

8 Conclusion

Botnets represent one of the major threats for the Internet community. In this
paper we have presented FluXOR, the system we have developed to detect and
monitor fast-flux service networks. Fast-flux service networks are used by the
miscreants, controlling the biggest and most powerful botnets, to hide and to
maximise the availability of the core components of their business. Fast-flux ser-
vice networks offer researchers the possibility to observe a botnet from the out-



side, by simply observing what a victim of these botnets could observe. Through
FluXOR we have demonstrated that, by tracking fast-flux service networks with
very simple queries any end-user can perform, we were able to detect, in a very
short period of time, more than thirty thousands compromised machines re-
motely controlled by miscreants and used for various on-line frauds.
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